Patrick J Stiff, Elizabeth Kertowidjojo, Ronald K Potkul, Swarnali Banerjee, Swati Mehrotra, William Small, M Sharon Stack, Maureen L Drakes
{"title":"卡博替尼能抑制卵巢癌小鼠的肿瘤生长。","authors":"Patrick J Stiff, Elizabeth Kertowidjojo, Ronald K Potkul, Swarnali Banerjee, Swati Mehrotra, William Small, M Sharon Stack, Maureen L Drakes","doi":"10.62347/ZSWV1767","DOIUrl":null,"url":null,"abstract":"<p><p>Ovarian cancer is usually detected in the advanced stages. Existing treatments for high grade serous ovarian cancer (HGSOC) are not adequate and approximately fifty percent of patients succumb to this disease and die within five years after diagnosis. We conducted pre-clinical studies in a mouse model of ovarian cancer to evaluate disease outcome in response to treatment with the multi-kinase inhibitor cabozantinib. Cabozantinib is a receptor tyrosine kinase inhibitor with multiple targets including vascular endothelial growth factor receptor-2 (VEGFR-2), associated with immune suppression in ovarian cancer. Mice (C57BL/6) were injected with ID8-RFP ovarian tumor cells and treated with cabozantinib. Studies investigated ascites development, tumor burden and regulation of anti-tumor immunity with treatment. Mice treated with cabozantinib had significantly decreased solid tumor burden and decreased malignant ascites as compared to untreated controls. Improved outcome in cabozantinib treated mice was associated with a significantly higher percentage of CD69 early activated T cells, a higher percentage of granzyme B secreting CD8 T cells, the enhanced release of cytokines and chemokines known to recruit CD8 T cells and amplify T cell function, as well as reduced VEGFR-2. Findings suggest that cabozantinib is an important clinical agent capable of improving ovarian cancer in mice potentially in part by priming the autologous immune system to promote anti-tumor immunity.</p>","PeriodicalId":7437,"journal":{"name":"American journal of cancer research","volume":"14 10","pages":"4788-4802"},"PeriodicalIF":3.6000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11560812/pdf/","citationCount":"0","resultStr":"{\"title\":\"Cabozantinib inhibits tumor growth in mice with ovarian cancer.\",\"authors\":\"Patrick J Stiff, Elizabeth Kertowidjojo, Ronald K Potkul, Swarnali Banerjee, Swati Mehrotra, William Small, M Sharon Stack, Maureen L Drakes\",\"doi\":\"10.62347/ZSWV1767\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ovarian cancer is usually detected in the advanced stages. Existing treatments for high grade serous ovarian cancer (HGSOC) are not adequate and approximately fifty percent of patients succumb to this disease and die within five years after diagnosis. We conducted pre-clinical studies in a mouse model of ovarian cancer to evaluate disease outcome in response to treatment with the multi-kinase inhibitor cabozantinib. Cabozantinib is a receptor tyrosine kinase inhibitor with multiple targets including vascular endothelial growth factor receptor-2 (VEGFR-2), associated with immune suppression in ovarian cancer. Mice (C57BL/6) were injected with ID8-RFP ovarian tumor cells and treated with cabozantinib. Studies investigated ascites development, tumor burden and regulation of anti-tumor immunity with treatment. Mice treated with cabozantinib had significantly decreased solid tumor burden and decreased malignant ascites as compared to untreated controls. Improved outcome in cabozantinib treated mice was associated with a significantly higher percentage of CD69 early activated T cells, a higher percentage of granzyme B secreting CD8 T cells, the enhanced release of cytokines and chemokines known to recruit CD8 T cells and amplify T cell function, as well as reduced VEGFR-2. Findings suggest that cabozantinib is an important clinical agent capable of improving ovarian cancer in mice potentially in part by priming the autologous immune system to promote anti-tumor immunity.</p>\",\"PeriodicalId\":7437,\"journal\":{\"name\":\"American journal of cancer research\",\"volume\":\"14 10\",\"pages\":\"4788-4802\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11560812/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of cancer research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.62347/ZSWV1767\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of cancer research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.62347/ZSWV1767","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
Cabozantinib inhibits tumor growth in mice with ovarian cancer.
Ovarian cancer is usually detected in the advanced stages. Existing treatments for high grade serous ovarian cancer (HGSOC) are not adequate and approximately fifty percent of patients succumb to this disease and die within five years after diagnosis. We conducted pre-clinical studies in a mouse model of ovarian cancer to evaluate disease outcome in response to treatment with the multi-kinase inhibitor cabozantinib. Cabozantinib is a receptor tyrosine kinase inhibitor with multiple targets including vascular endothelial growth factor receptor-2 (VEGFR-2), associated with immune suppression in ovarian cancer. Mice (C57BL/6) were injected with ID8-RFP ovarian tumor cells and treated with cabozantinib. Studies investigated ascites development, tumor burden and regulation of anti-tumor immunity with treatment. Mice treated with cabozantinib had significantly decreased solid tumor burden and decreased malignant ascites as compared to untreated controls. Improved outcome in cabozantinib treated mice was associated with a significantly higher percentage of CD69 early activated T cells, a higher percentage of granzyme B secreting CD8 T cells, the enhanced release of cytokines and chemokines known to recruit CD8 T cells and amplify T cell function, as well as reduced VEGFR-2. Findings suggest that cabozantinib is an important clinical agent capable of improving ovarian cancer in mice potentially in part by priming the autologous immune system to promote anti-tumor immunity.
期刊介绍:
The American Journal of Cancer Research (AJCR) (ISSN 2156-6976), is an independent open access, online only journal to facilitate rapid dissemination of novel discoveries in basic science and treatment of cancer. It was founded by a group of scientists for cancer research and clinical academic oncologists from around the world, who are devoted to the promotion and advancement of our understanding of the cancer and its treatment. The scope of AJCR is intended to encompass that of multi-disciplinary researchers from any scientific discipline where the primary focus of the research is to increase and integrate knowledge about etiology and molecular mechanisms of carcinogenesis with the ultimate aim of advancing the cure and prevention of this increasingly devastating disease. To achieve these aims AJCR will publish review articles, original articles and new techniques in cancer research and therapy. It will also publish hypothesis, case reports and letter to the editor. Unlike most other open access online journals, AJCR will keep most of the traditional features of paper print that we are all familiar with, such as continuous volume, issue numbers, as well as continuous page numbers to retain our comfortable familiarity towards an academic journal.