αCD206-synNotch受体工程学:新型合成受体开发的启示。

IF 3.7 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Sofija Semeniuk, Bin-Zhi Qian, Elise Cachat
{"title":"αCD206-synNotch受体工程学:新型合成受体开发的启示。","authors":"Sofija Semeniuk, Bin-Zhi Qian, Elise Cachat","doi":"10.1021/acssynbio.4c00149","DOIUrl":null,"url":null,"abstract":"<p><p>Immune cells play a pivotal role in the establishment, growth, and progression of tumors at primary and metastatic sites. Macrophages, in particular, play a critical role in suppressing immune responses and promoting an anti-inflammatory environment through both direct and indirect cell-cell interactions. However, our understanding of the mechanisms underlying such interactions is limited due to a lack of reliable tools for studying transient interactions between cancer cells and macrophages within the tumor microenvironment. Recent advances in mammalian synthetic biology have introduced a wide range of synthetic receptors that have been used in diverse biosensing applications. One such synthetic receptor is the synNotch receptor, which can be tailored to sense specific ligands displayed on the surface of target cells. With this study, we aimed at developing a novel αCD206-synNotch receptor, targeting CD206<sup>+</sup> macrophages, a population of macrophages that play a crucial role in promoting metastatic seeding and persistent growth. Engineered in cancer cells and used in mouse metastasis models, such a tool could help monitor─and provide an understanding of─the effects that cell-cell interactions between macrophages and cancer cells have on metastasis establishment. Here, we report the development of cancer landing-pad cells for versatile applications and the engineering of αCD206-synNotch cancer cells in particular. We report the measurement of their activity and specificity, and discuss unexpected caveats regarding their <i>in vivo</i> applications.</p>","PeriodicalId":26,"journal":{"name":"ACS Synthetic Biology","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Engineering an αCD206-synNotch Receptor: Insights into the Development of Novel Synthetic Receptors.\",\"authors\":\"Sofija Semeniuk, Bin-Zhi Qian, Elise Cachat\",\"doi\":\"10.1021/acssynbio.4c00149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Immune cells play a pivotal role in the establishment, growth, and progression of tumors at primary and metastatic sites. Macrophages, in particular, play a critical role in suppressing immune responses and promoting an anti-inflammatory environment through both direct and indirect cell-cell interactions. However, our understanding of the mechanisms underlying such interactions is limited due to a lack of reliable tools for studying transient interactions between cancer cells and macrophages within the tumor microenvironment. Recent advances in mammalian synthetic biology have introduced a wide range of synthetic receptors that have been used in diverse biosensing applications. One such synthetic receptor is the synNotch receptor, which can be tailored to sense specific ligands displayed on the surface of target cells. With this study, we aimed at developing a novel αCD206-synNotch receptor, targeting CD206<sup>+</sup> macrophages, a population of macrophages that play a crucial role in promoting metastatic seeding and persistent growth. Engineered in cancer cells and used in mouse metastasis models, such a tool could help monitor─and provide an understanding of─the effects that cell-cell interactions between macrophages and cancer cells have on metastasis establishment. Here, we report the development of cancer landing-pad cells for versatile applications and the engineering of αCD206-synNotch cancer cells in particular. We report the measurement of their activity and specificity, and discuss unexpected caveats regarding their <i>in vivo</i> applications.</p>\",\"PeriodicalId\":26,\"journal\":{\"name\":\"ACS Synthetic Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Synthetic Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1021/acssynbio.4c00149\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Synthetic Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acssynbio.4c00149","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Engineering an αCD206-synNotch Receptor: Insights into the Development of Novel Synthetic Receptors.

Immune cells play a pivotal role in the establishment, growth, and progression of tumors at primary and metastatic sites. Macrophages, in particular, play a critical role in suppressing immune responses and promoting an anti-inflammatory environment through both direct and indirect cell-cell interactions. However, our understanding of the mechanisms underlying such interactions is limited due to a lack of reliable tools for studying transient interactions between cancer cells and macrophages within the tumor microenvironment. Recent advances in mammalian synthetic biology have introduced a wide range of synthetic receptors that have been used in diverse biosensing applications. One such synthetic receptor is the synNotch receptor, which can be tailored to sense specific ligands displayed on the surface of target cells. With this study, we aimed at developing a novel αCD206-synNotch receptor, targeting CD206+ macrophages, a population of macrophages that play a crucial role in promoting metastatic seeding and persistent growth. Engineered in cancer cells and used in mouse metastasis models, such a tool could help monitor─and provide an understanding of─the effects that cell-cell interactions between macrophages and cancer cells have on metastasis establishment. Here, we report the development of cancer landing-pad cells for versatile applications and the engineering of αCD206-synNotch cancer cells in particular. We report the measurement of their activity and specificity, and discuss unexpected caveats regarding their in vivo applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.00
自引率
10.60%
发文量
380
审稿时长
6-12 weeks
期刊介绍: The journal is particularly interested in studies on the design and synthesis of new genetic circuits and gene products; computational methods in the design of systems; and integrative applied approaches to understanding disease and metabolism. Topics may include, but are not limited to: Design and optimization of genetic systems Genetic circuit design and their principles for their organization into programs Computational methods to aid the design of genetic systems Experimental methods to quantify genetic parts, circuits, and metabolic fluxes Genetic parts libraries: their creation, analysis, and ontological representation Protein engineering including computational design Metabolic engineering and cellular manufacturing, including biomass conversion Natural product access, engineering, and production Creative and innovative applications of cellular programming Medical applications, tissue engineering, and the programming of therapeutic cells Minimal cell design and construction Genomics and genome replacement strategies Viral engineering Automated and robotic assembly platforms for synthetic biology DNA synthesis methodologies Metagenomics and synthetic metagenomic analysis Bioinformatics applied to gene discovery, chemoinformatics, and pathway construction Gene optimization Methods for genome-scale measurements of transcription and metabolomics Systems biology and methods to integrate multiple data sources in vitro and cell-free synthetic biology and molecular programming Nucleic acid engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信