波尔兹曼碰撞算子增益项的(L^p\)估计及其应用

IF 2.6 1区 数学 Q1 MATHEMATICS, APPLIED
Ling-Bing He, Jin-Cheng Jiang, Hung-Wen Kuo, Meng-Hao Liang
{"title":"波尔兹曼碰撞算子增益项的(L^p\\)估计及其应用","authors":"Ling-Bing He,&nbsp;Jin-Cheng Jiang,&nbsp;Hung-Wen Kuo,&nbsp;Meng-Hao Liang","doi":"10.1007/s00205-024-02067-8","DOIUrl":null,"url":null,"abstract":"<div><p>We prove the Hardy–Littlewood–Sobolev type <span>\\(L^p\\)</span> estimates for the gain term of the Boltzmann collision operator including Maxwellian molecule, hard potential and hard sphere models. Combined with the results of Alonso et al. (Comm Math Phys 298: 293–322, 2010) for the soft potential and Maxwellian molecule models, we provide a unified form of <span>\\(L^p\\)</span> estimate for all cutoff models which are sharp in the sense of scaling. The most striking feature of our new estimates for the hard potential and hard sphere models is that they do not increase the moment, the same as Maxwellian molecule and soft potential models. Based on these novelties, we prove the global existence and scattering of the non-negative unique mild solution for the Cauchy problem of the Boltzmann equation when the positive initial data is small in the weighted <span>\\(L^3_{x,v}\\)</span> space.</p></div>","PeriodicalId":55484,"journal":{"name":"Archive for Rational Mechanics and Analysis","volume":"248 6","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The \\\\(L^p\\\\) Estimate for the Gain Term of the Boltzmann Collision Operator and Its Application\",\"authors\":\"Ling-Bing He,&nbsp;Jin-Cheng Jiang,&nbsp;Hung-Wen Kuo,&nbsp;Meng-Hao Liang\",\"doi\":\"10.1007/s00205-024-02067-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We prove the Hardy–Littlewood–Sobolev type <span>\\\\(L^p\\\\)</span> estimates for the gain term of the Boltzmann collision operator including Maxwellian molecule, hard potential and hard sphere models. Combined with the results of Alonso et al. (Comm Math Phys 298: 293–322, 2010) for the soft potential and Maxwellian molecule models, we provide a unified form of <span>\\\\(L^p\\\\)</span> estimate for all cutoff models which are sharp in the sense of scaling. The most striking feature of our new estimates for the hard potential and hard sphere models is that they do not increase the moment, the same as Maxwellian molecule and soft potential models. Based on these novelties, we prove the global existence and scattering of the non-negative unique mild solution for the Cauchy problem of the Boltzmann equation when the positive initial data is small in the weighted <span>\\\\(L^3_{x,v}\\\\)</span> space.</p></div>\",\"PeriodicalId\":55484,\"journal\":{\"name\":\"Archive for Rational Mechanics and Analysis\",\"volume\":\"248 6\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archive for Rational Mechanics and Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00205-024-02067-8\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Rational Mechanics and Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-024-02067-8","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了波尔兹曼碰撞算子增益项的\(L^p\)哈代-利特尔伍德-索博列夫型估计,包括麦克斯韦分子模型、硬势模型和硬球模型。结合阿隆索等人(Comm Math Phys 298: 293-322, 2010)对软势和麦克斯韦分子模型的研究结果,我们为所有截止模型提供了统一形式的\(L^p\)估计值,这些估计值在缩放意义上是尖锐的。我们对硬势模型和硬球模型的新估计的最显著特点是,它们与麦克斯韦分子模型和软势模型一样,不会增加力矩。基于这些新发现,我们证明了在加权\(L^3_{x,v}\)空间中,当正初始数据很小时,波尔兹曼方程考希问题的非负唯一温和解的全局存在性和散射性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The \(L^p\) Estimate for the Gain Term of the Boltzmann Collision Operator and Its Application

We prove the Hardy–Littlewood–Sobolev type \(L^p\) estimates for the gain term of the Boltzmann collision operator including Maxwellian molecule, hard potential and hard sphere models. Combined with the results of Alonso et al. (Comm Math Phys 298: 293–322, 2010) for the soft potential and Maxwellian molecule models, we provide a unified form of \(L^p\) estimate for all cutoff models which are sharp in the sense of scaling. The most striking feature of our new estimates for the hard potential and hard sphere models is that they do not increase the moment, the same as Maxwellian molecule and soft potential models. Based on these novelties, we prove the global existence and scattering of the non-negative unique mild solution for the Cauchy problem of the Boltzmann equation when the positive initial data is small in the weighted \(L^3_{x,v}\) space.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.10
自引率
8.00%
发文量
98
审稿时长
4-8 weeks
期刊介绍: The Archive for Rational Mechanics and Analysis nourishes the discipline of mechanics as a deductive, mathematical science in the classical tradition and promotes analysis, particularly in the context of application. Its purpose is to give rapid and full publication to research of exceptional moment, depth and permanence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信