{"title":"非球形团块的凝固方程","authors":"Iulia Cristian, Juan J. L. Velázquez","doi":"10.1007/s00205-024-02061-0","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we study the long time asymptotics of a coagulation model which describes the evolution of a system of particles characterized by their volume and surface area. The aggregation mechanism takes place in two stages: collision and fusion of particles. During the collision stage, the two particles merge at a contact point. The newly formed particle has volume and area equal to the sum of the respective quantities of the two colliding particles. After collision, the fusion phase begins and during it the geometry of the interacting particles is modified in such a way that the volume of the total system is preserved and the surface area is reduced. During their evolution, the particles must satisfy the isoperimetric inequality. Therefore, the distribution of particles in the volume and area space is supported in the region where <span>\\(\\{a\\ge (36\\pi )^{\\frac{1}{3}}v^{\\frac{2}{3}}\\}\\)</span>. We assume the coagulation kernel has a weak dependence on the area variable. We prove existence of self-similar profiles for some choices of the functions describing the fusion rate for which the particles have a shape that is close to spherical. On the other hand, for other fusion mechanisms and suitable choices of initial data, we show that the particle distribution describes a system of ramified-like particles.</p></div>","PeriodicalId":55484,"journal":{"name":"Archive for Rational Mechanics and Analysis","volume":"248 6","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00205-024-02061-0.pdf","citationCount":"0","resultStr":"{\"title\":\"Coagulation Equations for Non-spherical Clusters\",\"authors\":\"Iulia Cristian, Juan J. L. Velázquez\",\"doi\":\"10.1007/s00205-024-02061-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this work, we study the long time asymptotics of a coagulation model which describes the evolution of a system of particles characterized by their volume and surface area. The aggregation mechanism takes place in two stages: collision and fusion of particles. During the collision stage, the two particles merge at a contact point. The newly formed particle has volume and area equal to the sum of the respective quantities of the two colliding particles. After collision, the fusion phase begins and during it the geometry of the interacting particles is modified in such a way that the volume of the total system is preserved and the surface area is reduced. During their evolution, the particles must satisfy the isoperimetric inequality. Therefore, the distribution of particles in the volume and area space is supported in the region where <span>\\\\(\\\\{a\\\\ge (36\\\\pi )^{\\\\frac{1}{3}}v^{\\\\frac{2}{3}}\\\\}\\\\)</span>. We assume the coagulation kernel has a weak dependence on the area variable. We prove existence of self-similar profiles for some choices of the functions describing the fusion rate for which the particles have a shape that is close to spherical. On the other hand, for other fusion mechanisms and suitable choices of initial data, we show that the particle distribution describes a system of ramified-like particles.</p></div>\",\"PeriodicalId\":55484,\"journal\":{\"name\":\"Archive for Rational Mechanics and Analysis\",\"volume\":\"248 6\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00205-024-02061-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archive for Rational Mechanics and Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00205-024-02061-0\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Rational Mechanics and Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-024-02061-0","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
In this work, we study the long time asymptotics of a coagulation model which describes the evolution of a system of particles characterized by their volume and surface area. The aggregation mechanism takes place in two stages: collision and fusion of particles. During the collision stage, the two particles merge at a contact point. The newly formed particle has volume and area equal to the sum of the respective quantities of the two colliding particles. After collision, the fusion phase begins and during it the geometry of the interacting particles is modified in such a way that the volume of the total system is preserved and the surface area is reduced. During their evolution, the particles must satisfy the isoperimetric inequality. Therefore, the distribution of particles in the volume and area space is supported in the region where \(\{a\ge (36\pi )^{\frac{1}{3}}v^{\frac{2}{3}}\}\). We assume the coagulation kernel has a weak dependence on the area variable. We prove existence of self-similar profiles for some choices of the functions describing the fusion rate for which the particles have a shape that is close to spherical. On the other hand, for other fusion mechanisms and suitable choices of initial data, we show that the particle distribution describes a system of ramified-like particles.
期刊介绍:
The Archive for Rational Mechanics and Analysis nourishes the discipline of mechanics as a deductive, mathematical science in the classical tradition and promotes analysis, particularly in the context of application. Its purpose is to give rapid and full publication to research of exceptional moment, depth and permanence.