关于阿佩里样数上的木户-和歌山超共格猜想

IF 0.5 4区 数学 Q3 MATHEMATICS
Ji-Cai Liu
{"title":"关于阿佩里样数上的木户-和歌山超共格猜想","authors":"Ji-Cai Liu","doi":"10.1007/s00013-024-02062-1","DOIUrl":null,"url":null,"abstract":"<div><p>Kimoto and Wakayama [Ann. Inst. Henri Poincaré D 10 (2023), 205–275] studied the special values of the spectral zeta function <span>\\(\\zeta _Q(s)\\)</span> associated to the non-commutative harmonic oscillator <span>\\(Q_{\\alpha ,\\beta }\\)</span>. Two kinds of Apéry-like numbers (even case <span>\\(\\widetilde{J}_{2s+2}(n)\\)</span> and odd case <span>\\(\\widetilde{J}_{2s+1}(n)\\)</span>) naturally arise in the expressions for the special values of <span>\\(\\zeta _Q(s)\\)</span> at integer points. Supercongruences among these Apéry-like numbers lead one to the modularity of the generating functions of the Apéry-like numbers. Kimoto and Wakayama established a supercongruence among <span>\\(\\widetilde{J}_{2s+2}(n)\\)</span>, and conjectured the same type of supercongruence for <span>\\(\\widetilde{J}_{2s+1}(n)\\)</span> as in the even case <span>\\(\\widetilde{J}_{2s+2}(n)\\)</span>. In this work, we confirm Kimoto and Wakayama’s supercongruence conjecture in the odd case of Apéry-like numbers <span>\\(\\widetilde{J}_{2s+1}(n)\\)</span>.</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":"123 6","pages":"615 - 624"},"PeriodicalIF":0.5000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Kimoto–Wakayama supercongruence conjecture on Apéry-like numbers\",\"authors\":\"Ji-Cai Liu\",\"doi\":\"10.1007/s00013-024-02062-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Kimoto and Wakayama [Ann. Inst. Henri Poincaré D 10 (2023), 205–275] studied the special values of the spectral zeta function <span>\\\\(\\\\zeta _Q(s)\\\\)</span> associated to the non-commutative harmonic oscillator <span>\\\\(Q_{\\\\alpha ,\\\\beta }\\\\)</span>. Two kinds of Apéry-like numbers (even case <span>\\\\(\\\\widetilde{J}_{2s+2}(n)\\\\)</span> and odd case <span>\\\\(\\\\widetilde{J}_{2s+1}(n)\\\\)</span>) naturally arise in the expressions for the special values of <span>\\\\(\\\\zeta _Q(s)\\\\)</span> at integer points. Supercongruences among these Apéry-like numbers lead one to the modularity of the generating functions of the Apéry-like numbers. Kimoto and Wakayama established a supercongruence among <span>\\\\(\\\\widetilde{J}_{2s+2}(n)\\\\)</span>, and conjectured the same type of supercongruence for <span>\\\\(\\\\widetilde{J}_{2s+1}(n)\\\\)</span> as in the even case <span>\\\\(\\\\widetilde{J}_{2s+2}(n)\\\\)</span>. In this work, we confirm Kimoto and Wakayama’s supercongruence conjecture in the odd case of Apéry-like numbers <span>\\\\(\\\\widetilde{J}_{2s+1}(n)\\\\)</span>.</p></div>\",\"PeriodicalId\":8346,\"journal\":{\"name\":\"Archiv der Mathematik\",\"volume\":\"123 6\",\"pages\":\"615 - 624\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archiv der Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00013-024-02062-1\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-024-02062-1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

Kimoto 和 Wakayama [Ann. Henri Poincaré D 10 (2023), 205-275] 研究了与非交换谐振子 \(Q_{\alpha ,\beta }\) 相关的谱zeta函数 \(\zeta _Q(s)\) 的特殊值。在整数点上的\(\zeta _Q(s)\ 的特殊值的表达式中自然会出现两种阿佩里样数(偶数情况下的\(\widetilde{J}_{2s+2}(n)\)和奇数情况下的\(\widetilde{J}_{2s+1}(n)\)。这些类阿佩里数之间的超共轭关系使人们发现了类阿佩里数生成函数的模块性。Kimoto 和 Wakayama 建立了 \(\widetilde{J}_{2s+2}(n)\) 之间的超共融,并猜想 \(\widetilde{J}_{2s+1}(n)\) 与偶数情况下的\(\widetilde{J}_{2s+2}(n)\) 具有相同类型的超共融。在这项工作中,我们证实了 Kimoto 和 Wakayama 在 Apéry-like 数 \(\widetilde{J}_{2s+1}(n)\) 的奇数情况下的超共格猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Kimoto–Wakayama supercongruence conjecture on Apéry-like numbers

Kimoto and Wakayama [Ann. Inst. Henri Poincaré D 10 (2023), 205–275] studied the special values of the spectral zeta function \(\zeta _Q(s)\) associated to the non-commutative harmonic oscillator \(Q_{\alpha ,\beta }\). Two kinds of Apéry-like numbers (even case \(\widetilde{J}_{2s+2}(n)\) and odd case \(\widetilde{J}_{2s+1}(n)\)) naturally arise in the expressions for the special values of \(\zeta _Q(s)\) at integer points. Supercongruences among these Apéry-like numbers lead one to the modularity of the generating functions of the Apéry-like numbers. Kimoto and Wakayama established a supercongruence among \(\widetilde{J}_{2s+2}(n)\), and conjectured the same type of supercongruence for \(\widetilde{J}_{2s+1}(n)\) as in the even case \(\widetilde{J}_{2s+2}(n)\). In this work, we confirm Kimoto and Wakayama’s supercongruence conjecture in the odd case of Apéry-like numbers \(\widetilde{J}_{2s+1}(n)\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archiv der Mathematik
Archiv der Mathematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
117
审稿时长
4-8 weeks
期刊介绍: Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信