论大区间上一维薛定谔算子的谱差距

IF 0.5 4区 数学 Q3 MATHEMATICS
Joachim Kerner, Matthias Täufer
{"title":"论大区间上一维薛定谔算子的谱差距","authors":"Joachim Kerner,&nbsp;Matthias Täufer","doi":"10.1007/s00013-024-02060-3","DOIUrl":null,"url":null,"abstract":"<div><p>We study the effect of non-negative potentials on the spectral gap of one-dimensional Schrödinger operators in the limit of large intervals. We derive upper bounds on the gap for different classes of potentials and show, as a main result, that the spectral gap of a Schrödinger operator with a non-zero and sufficiently fast decaying potential closes strictly faster than the gap of the free Laplacian. We show optimality of this result in some sense and establish a conjecture towards the actual decay rate of the spectral gap.\n</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":"123 6","pages":"641 - 652"},"PeriodicalIF":0.5000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00013-024-02060-3.pdf","citationCount":"0","resultStr":"{\"title\":\"On the spectral gap of one-dimensional Schrödinger operators on large intervals\",\"authors\":\"Joachim Kerner,&nbsp;Matthias Täufer\",\"doi\":\"10.1007/s00013-024-02060-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study the effect of non-negative potentials on the spectral gap of one-dimensional Schrödinger operators in the limit of large intervals. We derive upper bounds on the gap for different classes of potentials and show, as a main result, that the spectral gap of a Schrödinger operator with a non-zero and sufficiently fast decaying potential closes strictly faster than the gap of the free Laplacian. We show optimality of this result in some sense and establish a conjecture towards the actual decay rate of the spectral gap.\\n</p></div>\",\"PeriodicalId\":8346,\"journal\":{\"name\":\"Archiv der Mathematik\",\"volume\":\"123 6\",\"pages\":\"641 - 652\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00013-024-02060-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archiv der Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00013-024-02060-3\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-024-02060-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了非负势能在大区间极限下对一维薛定谔算子谱隙的影响。我们推导出了不同类别势的谱间隙上限,并证明了一个主要结果,即具有非零和足够快衰减势的薛定谔算子的谱间隙的闭合速度严格快于自由拉普拉斯的间隙。我们证明了这一结果在某种意义上的最优性,并建立了关于谱间隙实际衰减速度的猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the spectral gap of one-dimensional Schrödinger operators on large intervals

We study the effect of non-negative potentials on the spectral gap of one-dimensional Schrödinger operators in the limit of large intervals. We derive upper bounds on the gap for different classes of potentials and show, as a main result, that the spectral gap of a Schrödinger operator with a non-zero and sufficiently fast decaying potential closes strictly faster than the gap of the free Laplacian. We show optimality of this result in some sense and establish a conjecture towards the actual decay rate of the spectral gap.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archiv der Mathematik
Archiv der Mathematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
117
审稿时长
4-8 weeks
期刊介绍: Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信