{"title":"启航:实现对时态网络信息扩散的及时监测","authors":"Haifa Gaza;Jaewook Byun","doi":"10.1109/TKDE.2023.3347621","DOIUrl":null,"url":null,"abstract":"Analyses of temporal graphs provide valuable insights into temporal data through the use of two analytical approaches: temporal evolution and temporal information diffusion. The former shows how a network evolves over time; the latter explains how information spreads throughout a network over time. Systems have been mainly proposed to efficiently handle graph snapshots, which are suitable for temporal evolution but inappropriate for temporal information diffusion. For analyses of temporal information diffusion, temporal graph traversal platforms have recently been proposed; however, it is still infeasible to handle infinitely evolving temporal data, especially for monitoring applications. In this paper, we propose an incremental approach and its graph processing engine, Kairos, to enable prompt monitoring of temporal information diffusion. This approach makes it possible to immediately process diffusion results for sources of interest by traversing a part of the whole network, which avoids full traversals influenced by a small change in the network, thus making monitoring applications feasible. The recipes for implementing incremental versions of existing temporal graph traversal algorithms and metrics will make it easier for users to build their ad-hoc programs.","PeriodicalId":13496,"journal":{"name":"IEEE Transactions on Knowledge and Data Engineering","volume":"36 12","pages":"8607-8621"},"PeriodicalIF":8.9000,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10374549","citationCount":"0","resultStr":"{\"title\":\"Kairos: Enabling Prompt Monitoring of Information Diffusion Over Temporal Networks\",\"authors\":\"Haifa Gaza;Jaewook Byun\",\"doi\":\"10.1109/TKDE.2023.3347621\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Analyses of temporal graphs provide valuable insights into temporal data through the use of two analytical approaches: temporal evolution and temporal information diffusion. The former shows how a network evolves over time; the latter explains how information spreads throughout a network over time. Systems have been mainly proposed to efficiently handle graph snapshots, which are suitable for temporal evolution but inappropriate for temporal information diffusion. For analyses of temporal information diffusion, temporal graph traversal platforms have recently been proposed; however, it is still infeasible to handle infinitely evolving temporal data, especially for monitoring applications. In this paper, we propose an incremental approach and its graph processing engine, Kairos, to enable prompt monitoring of temporal information diffusion. This approach makes it possible to immediately process diffusion results for sources of interest by traversing a part of the whole network, which avoids full traversals influenced by a small change in the network, thus making monitoring applications feasible. The recipes for implementing incremental versions of existing temporal graph traversal algorithms and metrics will make it easier for users to build their ad-hoc programs.\",\"PeriodicalId\":13496,\"journal\":{\"name\":\"IEEE Transactions on Knowledge and Data Engineering\",\"volume\":\"36 12\",\"pages\":\"8607-8621\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2023-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10374549\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Knowledge and Data Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10374549/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Knowledge and Data Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10374549/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Kairos: Enabling Prompt Monitoring of Information Diffusion Over Temporal Networks
Analyses of temporal graphs provide valuable insights into temporal data through the use of two analytical approaches: temporal evolution and temporal information diffusion. The former shows how a network evolves over time; the latter explains how information spreads throughout a network over time. Systems have been mainly proposed to efficiently handle graph snapshots, which are suitable for temporal evolution but inappropriate for temporal information diffusion. For analyses of temporal information diffusion, temporal graph traversal platforms have recently been proposed; however, it is still infeasible to handle infinitely evolving temporal data, especially for monitoring applications. In this paper, we propose an incremental approach and its graph processing engine, Kairos, to enable prompt monitoring of temporal information diffusion. This approach makes it possible to immediately process diffusion results for sources of interest by traversing a part of the whole network, which avoids full traversals influenced by a small change in the network, thus making monitoring applications feasible. The recipes for implementing incremental versions of existing temporal graph traversal algorithms and metrics will make it easier for users to build their ad-hoc programs.
期刊介绍:
The IEEE Transactions on Knowledge and Data Engineering encompasses knowledge and data engineering aspects within computer science, artificial intelligence, electrical engineering, computer engineering, and related fields. It provides an interdisciplinary platform for disseminating new developments in knowledge and data engineering and explores the practicality of these concepts in both hardware and software. Specific areas covered include knowledge-based and expert systems, AI techniques for knowledge and data management, tools, and methodologies, distributed processing, real-time systems, architectures, data management practices, database design, query languages, security, fault tolerance, statistical databases, algorithms, performance evaluation, and applications.