基于表征学习和主题相关性的衍生主题传播模型

IF 8.9 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Qian Li;Yunpeng Xiao;Xinming Zhou;Rong Wang;Sirui Duan;Xiang Yu
{"title":"基于表征学习和主题相关性的衍生主题传播模型","authors":"Qian Li;Yunpeng Xiao;Xinming Zhou;Rong Wang;Sirui Duan;Xiang Yu","doi":"10.1109/TKDE.2024.3484496","DOIUrl":null,"url":null,"abstract":"In social networks, topics often demonstrate a “fission” trend, where new topics arise from existing ones. Effectively predicting collective behavioral patterns during the dissemination of derivative topics is crucial for public opinion management. Addressing the symbiotic, antagonistic nature of “native-derived” topics, a derivative topic propagation model based on representation learning, topic relevance is proposed herein. First, considering the transition in user interest levels, cognitive accumulation at different evolutionary stages of native-derivative topics, a user content representation method, namely DTR2vec, is introduced, based on topic-related feature associations, for learning user content features. Then, evolutionary game theory is introduced by recognizing the symbiotic, antagonistic nature of “native-derived” topics during their propagation. Moreover, implicit relationships between users are explored, user influence is quantified for learning user structural features. Finally, considering the graph convolutional network’s ability to process non-euclidean structured data, the proposed model integrates user content, structural features to predict user forwarding behavior. Experimental results indicate that the proposed model not only effectively predicts the dissemination trends of derivative topics but also more authentically reflects the association, game relationships between native, derivative topics during their dissemination.","PeriodicalId":13496,"journal":{"name":"IEEE Transactions on Knowledge and Data Engineering","volume":"36 12","pages":"7468-7482"},"PeriodicalIF":8.9000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Derivative Topic Dissemination Model Based on Representation Learning and Topic Relevance\",\"authors\":\"Qian Li;Yunpeng Xiao;Xinming Zhou;Rong Wang;Sirui Duan;Xiang Yu\",\"doi\":\"10.1109/TKDE.2024.3484496\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In social networks, topics often demonstrate a “fission” trend, where new topics arise from existing ones. Effectively predicting collective behavioral patterns during the dissemination of derivative topics is crucial for public opinion management. Addressing the symbiotic, antagonistic nature of “native-derived” topics, a derivative topic propagation model based on representation learning, topic relevance is proposed herein. First, considering the transition in user interest levels, cognitive accumulation at different evolutionary stages of native-derivative topics, a user content representation method, namely DTR2vec, is introduced, based on topic-related feature associations, for learning user content features. Then, evolutionary game theory is introduced by recognizing the symbiotic, antagonistic nature of “native-derived” topics during their propagation. Moreover, implicit relationships between users are explored, user influence is quantified for learning user structural features. Finally, considering the graph convolutional network’s ability to process non-euclidean structured data, the proposed model integrates user content, structural features to predict user forwarding behavior. Experimental results indicate that the proposed model not only effectively predicts the dissemination trends of derivative topics but also more authentically reflects the association, game relationships between native, derivative topics during their dissemination.\",\"PeriodicalId\":13496,\"journal\":{\"name\":\"IEEE Transactions on Knowledge and Data Engineering\",\"volume\":\"36 12\",\"pages\":\"7468-7482\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Knowledge and Data Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10726726/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Knowledge and Data Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10726726/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

在社交网络中,话题经常呈现 "裂变 "趋势,即从现有话题衍生出新的话题。有效预测衍生话题传播过程中的集体行为模式对于舆论管理至关重要。针对 "原生衍生 "话题的共生、拮抗特性,本文提出了一种基于表征学习、话题相关性的衍生话题传播模型。首先,考虑到原生衍生话题在不同演化阶段用户兴趣水平、认知积累的转变,引入了一种基于话题相关特征关联的用户内容表征方法,即 DTR2vec,用于学习用户内容特征。然后,通过认识 "原生衍生 "话题在传播过程中的共生和对抗性质,引入进化博弈论。此外,还探索了用户之间的隐含关系,量化了用户影响力,从而学习用户结构特征。最后,考虑到图卷积网络处理非欧几里得结构数据的能力,提出的模型整合了用户内容、结构特征来预测用户转发行为。实验结果表明,所提出的模型不仅能有效预测衍生话题的传播趋势,还能更真实地反映原生话题和衍生话题在传播过程中的关联、博弈关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Derivative Topic Dissemination Model Based on Representation Learning and Topic Relevance
In social networks, topics often demonstrate a “fission” trend, where new topics arise from existing ones. Effectively predicting collective behavioral patterns during the dissemination of derivative topics is crucial for public opinion management. Addressing the symbiotic, antagonistic nature of “native-derived” topics, a derivative topic propagation model based on representation learning, topic relevance is proposed herein. First, considering the transition in user interest levels, cognitive accumulation at different evolutionary stages of native-derivative topics, a user content representation method, namely DTR2vec, is introduced, based on topic-related feature associations, for learning user content features. Then, evolutionary game theory is introduced by recognizing the symbiotic, antagonistic nature of “native-derived” topics during their propagation. Moreover, implicit relationships between users are explored, user influence is quantified for learning user structural features. Finally, considering the graph convolutional network’s ability to process non-euclidean structured data, the proposed model integrates user content, structural features to predict user forwarding behavior. Experimental results indicate that the proposed model not only effectively predicts the dissemination trends of derivative topics but also more authentically reflects the association, game relationships between native, derivative topics during their dissemination.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Knowledge and Data Engineering
IEEE Transactions on Knowledge and Data Engineering 工程技术-工程:电子与电气
CiteScore
11.70
自引率
3.40%
发文量
515
审稿时长
6 months
期刊介绍: The IEEE Transactions on Knowledge and Data Engineering encompasses knowledge and data engineering aspects within computer science, artificial intelligence, electrical engineering, computer engineering, and related fields. It provides an interdisciplinary platform for disseminating new developments in knowledge and data engineering and explores the practicality of these concepts in both hardware and software. Specific areas covered include knowledge-based and expert systems, AI techniques for knowledge and data management, tools, and methodologies, distributed processing, real-time systems, architectures, data management practices, database design, query languages, security, fault tolerance, statistical databases, algorithms, performance evaluation, and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信