{"title":"基于双跳图关注多视图融合网络的高光谱图像分类","authors":"Ying Cui;Li Luo;Lu Wang;Liwei Chen;Shan Gao;Chunhui Zhao;Cheng Tang","doi":"10.1109/JSTARS.2024.3486283","DOIUrl":null,"url":null,"abstract":"Hyperspectral image (HSI) is pivotal in ground object classification, owing to its rich spatial and spectral information. Recently, convolutional neural networks and graph neural networks have become hotspots in HSI classification. Although various methods have been developed, the problem of detail loss may still exist when extracting complex features within homogenous regions. To solve this issue, in this article, we proposed a double-hop graph attention multiview fusion network. This model is adept at pinpointing precise attention features by integrating a double-hop graph with the graph attention network, thereby enhancing the aggregation of multilevel node information and surmounting the limitations of a restricted receptive field. Furthermore, the spectral-coordinate attention module (SCAM) is presented to seize more nuanced spectral and spatial attention features. SCAM harnesses the coordinate attention mechanism for in-depth pixel-level global spectral–spatial view. Coupled with the multiscale Gabor texture view, we forge a multiview fusion network that meticulously highlights edge details across varying scales and captures beneficial features. Our experimental validation across four renowned benchmark HSI datasets showcases our model's superiority, outstripping comparative methods in classification accuracy with limited labeled samples.","PeriodicalId":13116,"journal":{"name":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","volume":"17 ","pages":"20080-20097"},"PeriodicalIF":4.7000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10735087","citationCount":"0","resultStr":"{\"title\":\"Hyperspectral Image Classification Based on Double-Hop Graph Attention Multiview Fusion Network\",\"authors\":\"Ying Cui;Li Luo;Lu Wang;Liwei Chen;Shan Gao;Chunhui Zhao;Cheng Tang\",\"doi\":\"10.1109/JSTARS.2024.3486283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hyperspectral image (HSI) is pivotal in ground object classification, owing to its rich spatial and spectral information. Recently, convolutional neural networks and graph neural networks have become hotspots in HSI classification. Although various methods have been developed, the problem of detail loss may still exist when extracting complex features within homogenous regions. To solve this issue, in this article, we proposed a double-hop graph attention multiview fusion network. This model is adept at pinpointing precise attention features by integrating a double-hop graph with the graph attention network, thereby enhancing the aggregation of multilevel node information and surmounting the limitations of a restricted receptive field. Furthermore, the spectral-coordinate attention module (SCAM) is presented to seize more nuanced spectral and spatial attention features. SCAM harnesses the coordinate attention mechanism for in-depth pixel-level global spectral–spatial view. Coupled with the multiscale Gabor texture view, we forge a multiview fusion network that meticulously highlights edge details across varying scales and captures beneficial features. Our experimental validation across four renowned benchmark HSI datasets showcases our model's superiority, outstripping comparative methods in classification accuracy with limited labeled samples.\",\"PeriodicalId\":13116,\"journal\":{\"name\":\"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing\",\"volume\":\"17 \",\"pages\":\"20080-20097\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10735087\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10735087/\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10735087/","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Hyperspectral Image Classification Based on Double-Hop Graph Attention Multiview Fusion Network
Hyperspectral image (HSI) is pivotal in ground object classification, owing to its rich spatial and spectral information. Recently, convolutional neural networks and graph neural networks have become hotspots in HSI classification. Although various methods have been developed, the problem of detail loss may still exist when extracting complex features within homogenous regions. To solve this issue, in this article, we proposed a double-hop graph attention multiview fusion network. This model is adept at pinpointing precise attention features by integrating a double-hop graph with the graph attention network, thereby enhancing the aggregation of multilevel node information and surmounting the limitations of a restricted receptive field. Furthermore, the spectral-coordinate attention module (SCAM) is presented to seize more nuanced spectral and spatial attention features. SCAM harnesses the coordinate attention mechanism for in-depth pixel-level global spectral–spatial view. Coupled with the multiscale Gabor texture view, we forge a multiview fusion network that meticulously highlights edge details across varying scales and captures beneficial features. Our experimental validation across four renowned benchmark HSI datasets showcases our model's superiority, outstripping comparative methods in classification accuracy with limited labeled samples.
期刊介绍:
The IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing addresses the growing field of applications in Earth observations and remote sensing, and also provides a venue for the rapidly expanding special issues that are being sponsored by the IEEE Geosciences and Remote Sensing Society. The journal draws upon the experience of the highly successful “IEEE Transactions on Geoscience and Remote Sensing” and provide a complementary medium for the wide range of topics in applied earth observations. The ‘Applications’ areas encompasses the societal benefit areas of the Global Earth Observations Systems of Systems (GEOSS) program. Through deliberations over two years, ministers from 50 countries agreed to identify nine areas where Earth observation could positively impact the quality of life and health of their respective countries. Some of these are areas not traditionally addressed in the IEEE context. These include biodiversity, health and climate. Yet it is the skill sets of IEEE members, in areas such as observations, communications, computers, signal processing, standards and ocean engineering, that form the technical underpinnings of GEOSS. Thus, the Journal attracts a broad range of interests that serves both present members in new ways and expands the IEEE visibility into new areas.