量规在时变金兹堡-朗道模型数值模拟中的影响

IF 1.2 4区 数学 Q2 MATHEMATICS, APPLIED
Cyril Tain, Jean-Guy Caputo, Ionut Danaila
{"title":"量规在时变金兹堡-朗道模型数值模拟中的影响","authors":"Cyril Tain,&nbsp;Jean-Guy Caputo,&nbsp;Ionut Danaila","doi":"10.1007/s10440-024-00701-x","DOIUrl":null,"url":null,"abstract":"<div><p>The time-dependent Ginzburg-Landau (TDGL) model requires the choice of a gauge for the problem to be mathematically well-posed. In the literature, three gauges are commonly used: the Coulomb gauge, the Lorenz gauge and the temporal gauge. It has been noticed (J. Fleckinger-Pellé et al. in Dynamics of the Ginzburg-Landau equations of superconductivity, Technical report, Argonne National Lab. (ANL), Argonne, IL, United States, 1997) that these gauges can be continuously related by a single parameter considering the more general <span>\\(\\omega \\)</span>-gauge, where <span>\\(\\omega \\)</span> is a non-negative real parameter. In this article, we study the influence of the gauge parameter <span>\\(\\omega \\)</span> on the convergence of numerical simulations of the TDGL model using finite element schemes. A classical benchmark is first analysed for different values of <span>\\(\\omega \\)</span> and artefacts are observed for lower values of <span>\\(\\omega \\)</span>. Then, we relate these observations with a systematic study of convergence orders in the unified <span>\\(\\omega \\)</span>-gauge framework. In particular, we show the existence of a tipping point value for <span>\\(\\omega \\)</span>, separating optimal convergence behaviour and a degenerate one. We find that numerical artefacts are correlated to the degeneracy of the convergence order of the method and we suggest strategies to avoid such undesirable effects. New 3D configurations are also investigated (the sphere with or without geometrical defect).</p></div>","PeriodicalId":53132,"journal":{"name":"Acta Applicandae Mathematicae","volume":"194 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of Gauges in the Numerical Simulation of the Time-Dependent Ginzburg-Landau Model\",\"authors\":\"Cyril Tain,&nbsp;Jean-Guy Caputo,&nbsp;Ionut Danaila\",\"doi\":\"10.1007/s10440-024-00701-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The time-dependent Ginzburg-Landau (TDGL) model requires the choice of a gauge for the problem to be mathematically well-posed. In the literature, three gauges are commonly used: the Coulomb gauge, the Lorenz gauge and the temporal gauge. It has been noticed (J. Fleckinger-Pellé et al. in Dynamics of the Ginzburg-Landau equations of superconductivity, Technical report, Argonne National Lab. (ANL), Argonne, IL, United States, 1997) that these gauges can be continuously related by a single parameter considering the more general <span>\\\\(\\\\omega \\\\)</span>-gauge, where <span>\\\\(\\\\omega \\\\)</span> is a non-negative real parameter. In this article, we study the influence of the gauge parameter <span>\\\\(\\\\omega \\\\)</span> on the convergence of numerical simulations of the TDGL model using finite element schemes. A classical benchmark is first analysed for different values of <span>\\\\(\\\\omega \\\\)</span> and artefacts are observed for lower values of <span>\\\\(\\\\omega \\\\)</span>. Then, we relate these observations with a systematic study of convergence orders in the unified <span>\\\\(\\\\omega \\\\)</span>-gauge framework. In particular, we show the existence of a tipping point value for <span>\\\\(\\\\omega \\\\)</span>, separating optimal convergence behaviour and a degenerate one. We find that numerical artefacts are correlated to the degeneracy of the convergence order of the method and we suggest strategies to avoid such undesirable effects. New 3D configurations are also investigated (the sphere with or without geometrical defect).</p></div>\",\"PeriodicalId\":53132,\"journal\":{\"name\":\"Acta Applicandae Mathematicae\",\"volume\":\"194 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Applicandae Mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10440-024-00701-x\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Applicandae Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10440-024-00701-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

与时间相关的金兹堡-朗道(TDGL)模型需要选择一种量规,才能使问题在数学上得到很好的解决。文献中通常使用三种量规:库仑量规、洛伦兹量规和时间量规。人们注意到(J. Fleckinger-Pellé et al. in Dynamics of the Ginzburg-Landau equations of superconductivity, Technical report, Argonne National Lab.(ANL), Argonne, IL, United States, 1997),考虑到更一般的 \(\omega \)-量规,这些量规可以通过一个参数连续相关,其中 \(\omega \)是一个非负实数参数。在本文中,我们研究了量规参数(\(\omega \)对使用有限元方案对 TDGL 模型进行数值模拟的收敛性的影响。首先分析了一个经典基准的不同值,并观察到较低的(\ω \)值会产生伪影。然后,我们将这些观察结果与统一的 \(\omega \)-量规框架中收敛阶数的系统研究联系起来。特别是,我们证明了 \(\omega \) 临界点值的存在,它将最佳收敛行为和退化行为区分开来。我们发现数值假象与该方法收敛阶数的退化相关,并提出了避免这种不良影响的策略。我们还研究了新的三维构型(带或不带几何缺陷的球体)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Influence of Gauges in the Numerical Simulation of the Time-Dependent Ginzburg-Landau Model

Influence of Gauges in the Numerical Simulation of the Time-Dependent Ginzburg-Landau Model

The time-dependent Ginzburg-Landau (TDGL) model requires the choice of a gauge for the problem to be mathematically well-posed. In the literature, three gauges are commonly used: the Coulomb gauge, the Lorenz gauge and the temporal gauge. It has been noticed (J. Fleckinger-Pellé et al. in Dynamics of the Ginzburg-Landau equations of superconductivity, Technical report, Argonne National Lab. (ANL), Argonne, IL, United States, 1997) that these gauges can be continuously related by a single parameter considering the more general \(\omega \)-gauge, where \(\omega \) is a non-negative real parameter. In this article, we study the influence of the gauge parameter \(\omega \) on the convergence of numerical simulations of the TDGL model using finite element schemes. A classical benchmark is first analysed for different values of \(\omega \) and artefacts are observed for lower values of \(\omega \). Then, we relate these observations with a systematic study of convergence orders in the unified \(\omega \)-gauge framework. In particular, we show the existence of a tipping point value for \(\omega \), separating optimal convergence behaviour and a degenerate one. We find that numerical artefacts are correlated to the degeneracy of the convergence order of the method and we suggest strategies to avoid such undesirable effects. New 3D configurations are also investigated (the sphere with or without geometrical defect).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Applicandae Mathematicae
Acta Applicandae Mathematicae 数学-应用数学
CiteScore
2.80
自引率
6.20%
发文量
77
审稿时长
16.2 months
期刊介绍: Acta Applicandae Mathematicae is devoted to the art and techniques of applying mathematics and the development of new, applicable mathematical methods. Covering a large spectrum from modeling to qualitative analysis and computational methods, Acta Applicandae Mathematicae contains papers on different aspects of the relationship between theory and applications, ranging from descriptive papers on actual applications meeting contemporary mathematical standards to proofs of new and deep theorems in applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信