识别依赖肌肉激活的人体-骨骼耦合参数。

IF 2 4区 医学 Q3 NEUROSCIENCES
Cheng Huang , Shuang Ji , Tianyi Sun, Zhenlei Chen, Qing Guo, Yao Yan
{"title":"识别依赖肌肉激活的人体-骨骼耦合参数。","authors":"Cheng Huang ,&nbsp;Shuang Ji ,&nbsp;Tianyi Sun,&nbsp;Zhenlei Chen,&nbsp;Qing Guo,&nbsp;Yao Yan","doi":"10.1016/j.jelekin.2024.102946","DOIUrl":null,"url":null,"abstract":"<div><div>This paper proposed a muscle-activation-dependent human-exoskeleton model for predicting human-exoskeleton coupling parameters to improve the studies of coupling dynamics. With a newly designed platform and the help of 20 volunteers (10 males and 10 females, age: 24.45 ± 2.31 years old, height: 167.70 ± 8.35 cm, weight: 66.50 ± 18.74 kg), coupling parameters were identified with surface electromyographic (EMG) signals monitored to represent muscle activation. Then convolutional neural network (CNN) was used to predict coupling parameters with six EMG features as inputs:mean absolute value (MAV), mean absolute value slope (MAVSLP), waveform length (WL), Willison Amplitude (WAMP), variance (VAR), and auto regressive (AR) coefficients. Finally, sensitivity analysis of the CNN’s performance identified AR, MAV, and VAR as the key determinants of the coupling parameters. Further analysis unveiled strong correlation between coupling stiffness and both MAV and VAR. The novelty and contribution are the design of coupling experimental platform and the establishment of muscle-activation-dependent human-exoskeleton coupling model which provides a possibility to obtain coupling parameter identification form complex human-exoskeleton interaction scenarios.</div></div>","PeriodicalId":56123,"journal":{"name":"Journal of Electromyography and Kinesiology","volume":"80 ","pages":"Article 102946"},"PeriodicalIF":2.0000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of muscle-activation-dependent human-exoskeleton coupling parameters\",\"authors\":\"Cheng Huang ,&nbsp;Shuang Ji ,&nbsp;Tianyi Sun,&nbsp;Zhenlei Chen,&nbsp;Qing Guo,&nbsp;Yao Yan\",\"doi\":\"10.1016/j.jelekin.2024.102946\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper proposed a muscle-activation-dependent human-exoskeleton model for predicting human-exoskeleton coupling parameters to improve the studies of coupling dynamics. With a newly designed platform and the help of 20 volunteers (10 males and 10 females, age: 24.45 ± 2.31 years old, height: 167.70 ± 8.35 cm, weight: 66.50 ± 18.74 kg), coupling parameters were identified with surface electromyographic (EMG) signals monitored to represent muscle activation. Then convolutional neural network (CNN) was used to predict coupling parameters with six EMG features as inputs:mean absolute value (MAV), mean absolute value slope (MAVSLP), waveform length (WL), Willison Amplitude (WAMP), variance (VAR), and auto regressive (AR) coefficients. Finally, sensitivity analysis of the CNN’s performance identified AR, MAV, and VAR as the key determinants of the coupling parameters. Further analysis unveiled strong correlation between coupling stiffness and both MAV and VAR. The novelty and contribution are the design of coupling experimental platform and the establishment of muscle-activation-dependent human-exoskeleton coupling model which provides a possibility to obtain coupling parameter identification form complex human-exoskeleton interaction scenarios.</div></div>\",\"PeriodicalId\":56123,\"journal\":{\"name\":\"Journal of Electromyography and Kinesiology\",\"volume\":\"80 \",\"pages\":\"Article 102946\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electromyography and Kinesiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1050641124000907\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electromyography and Kinesiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1050641124000907","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种依赖肌肉激活的人体-骨骼模型,用于预测人体-骨骼耦合参数,以改进耦合动力学研究。利用新设计的平台和 20 名志愿者(10 男 10 女,年龄:24.45±2.31 岁,身高:167.70±8.35 厘米,体重:66.50±18.74 千克)的帮助,通过监测代表肌肉激活的表面肌电图(EMG)信号确定耦合参数。然后,使用卷积神经网络(CNN)预测耦合参数,并将平均绝对值(MAV)、平均绝对值斜率(MAVSLP)、波形长度(WL)、威利森振幅(WAMP)、方差(VAR)和自回归系数(AR)作为输入。最后,CNN 性能的敏感性分析确定 AR、MAV 和 VAR 是耦合参数的关键决定因素。进一步的分析揭示了耦合刚度与 MAV 和 VAR 之间的强相关性。该研究的新颖性和贡献在于设计了耦合实验平台,并建立了依赖肌肉激活的人体-外骨骼耦合模型,从而为在复杂的人体-外骨骼交互场景中获得耦合参数识别提供了可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification of muscle-activation-dependent human-exoskeleton coupling parameters
This paper proposed a muscle-activation-dependent human-exoskeleton model for predicting human-exoskeleton coupling parameters to improve the studies of coupling dynamics. With a newly designed platform and the help of 20 volunteers (10 males and 10 females, age: 24.45 ± 2.31 years old, height: 167.70 ± 8.35 cm, weight: 66.50 ± 18.74 kg), coupling parameters were identified with surface electromyographic (EMG) signals monitored to represent muscle activation. Then convolutional neural network (CNN) was used to predict coupling parameters with six EMG features as inputs:mean absolute value (MAV), mean absolute value slope (MAVSLP), waveform length (WL), Willison Amplitude (WAMP), variance (VAR), and auto regressive (AR) coefficients. Finally, sensitivity analysis of the CNN’s performance identified AR, MAV, and VAR as the key determinants of the coupling parameters. Further analysis unveiled strong correlation between coupling stiffness and both MAV and VAR. The novelty and contribution are the design of coupling experimental platform and the establishment of muscle-activation-dependent human-exoskeleton coupling model which provides a possibility to obtain coupling parameter identification form complex human-exoskeleton interaction scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.70
自引率
8.00%
发文量
70
审稿时长
74 days
期刊介绍: Journal of Electromyography & Kinesiology is the primary source for outstanding original articles on the study of human movement from muscle contraction via its motor units and sensory system to integrated motion through mechanical and electrical detection techniques. As the official publication of the International Society of Electrophysiology and Kinesiology, the journal is dedicated to publishing the best work in all areas of electromyography and kinesiology, including: control of movement, muscle fatigue, muscle and nerve properties, joint biomechanics and electrical stimulation. Applications in rehabilitation, sports & exercise, motion analysis, ergonomics, alternative & complimentary medicine, measures of human performance and technical articles on electromyographic signal processing are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信