Tingting Hou, Xiaoxi Shen, Shan Zhang, Muxuan Liang, Li Chen, Qing Lu
{"title":"AIGen:用于复杂遗传数据分析的人工智能软件。","authors":"Tingting Hou, Xiaoxi Shen, Shan Zhang, Muxuan Liang, Li Chen, Qing Lu","doi":"10.1093/bib/bbae566","DOIUrl":null,"url":null,"abstract":"<p><p>The recent development of artificial intelligence (AI) technology, especially the advance of deep neural network (DNN) technology, has revolutionized many fields. While DNN plays a central role in modern AI technology, it has rarely been used in genetic data analysis due to analytical and computational challenges brought by high-dimensional genetic data and an increasing number of samples. To facilitate the use of AI in genetic data analysis, we developed a C++ package, AIGen, based on two newly developed neural networks (i.e. kernel neural networks and functional neural networks) that are capable of modeling complex genotype-phenotype relationships (e.g. interactions) while providing robust performance against high-dimensional genetic data. Moreover, computationally efficient algorithms (e.g. a minimum norm quadratic unbiased estimation approach and batch training) are implemented in the package to accelerate the computation, making them computationally efficient for analyzing large-scale datasets with thousands or even millions of samples. By applying AIGen to the UK Biobank dataset, we demonstrate that it can efficiently analyze large-scale genetic data, attain improved accuracy, and maintain robust performance. Availability: AIGen is developed in C++ and its source code, along with reference libraries, is publicly accessible on GitHub at https://github.com/TingtHou/AIGen.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"25 6","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11568876/pdf/","citationCount":"0","resultStr":"{\"title\":\"AIGen: an artificial intelligence software for complex genetic data analysis.\",\"authors\":\"Tingting Hou, Xiaoxi Shen, Shan Zhang, Muxuan Liang, Li Chen, Qing Lu\",\"doi\":\"10.1093/bib/bbae566\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The recent development of artificial intelligence (AI) technology, especially the advance of deep neural network (DNN) technology, has revolutionized many fields. While DNN plays a central role in modern AI technology, it has rarely been used in genetic data analysis due to analytical and computational challenges brought by high-dimensional genetic data and an increasing number of samples. To facilitate the use of AI in genetic data analysis, we developed a C++ package, AIGen, based on two newly developed neural networks (i.e. kernel neural networks and functional neural networks) that are capable of modeling complex genotype-phenotype relationships (e.g. interactions) while providing robust performance against high-dimensional genetic data. Moreover, computationally efficient algorithms (e.g. a minimum norm quadratic unbiased estimation approach and batch training) are implemented in the package to accelerate the computation, making them computationally efficient for analyzing large-scale datasets with thousands or even millions of samples. By applying AIGen to the UK Biobank dataset, we demonstrate that it can efficiently analyze large-scale genetic data, attain improved accuracy, and maintain robust performance. Availability: AIGen is developed in C++ and its source code, along with reference libraries, is publicly accessible on GitHub at https://github.com/TingtHou/AIGen.</p>\",\"PeriodicalId\":9209,\"journal\":{\"name\":\"Briefings in bioinformatics\",\"volume\":\"25 6\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11568876/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bib/bbae566\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbae566","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
摘要
近年来,人工智能(AI)技术的发展,尤其是深度神经网络(DNN)技术的进步,给许多领域带来了革命性的变化。虽然 DNN 在现代人工智能技术中发挥着核心作用,但由于高维遗传数据和日益增多的样本带来的分析和计算挑战,它很少被用于遗传数据分析。为了促进人工智能在遗传数据分析中的应用,我们开发了一个 C++ 软件包 AIGen,它基于两种新开发的神经网络(即核神经网络和功能神经网络),能够模拟复杂的基因型-表型关系(如相互作用),同时在处理高维遗传数据时具有强大的性能。此外,该软件包还采用了计算效率高的算法(如最小规范二次无偏估计方法和批量训练)来加速计算,使其在分析具有数千甚至数百万样本的大规模数据集时具有很高的计算效率。通过将 AIGen 应用于英国生物库数据集,我们证明了它可以高效地分析大规模遗传数据、提高准确性并保持稳健的性能。可用性AIGen 采用 C++ 开发,其源代码和参考库可在 GitHub 上公开访问,网址为 https://github.com/TingtHou/AIGen。
AIGen: an artificial intelligence software for complex genetic data analysis.
The recent development of artificial intelligence (AI) technology, especially the advance of deep neural network (DNN) technology, has revolutionized many fields. While DNN plays a central role in modern AI technology, it has rarely been used in genetic data analysis due to analytical and computational challenges brought by high-dimensional genetic data and an increasing number of samples. To facilitate the use of AI in genetic data analysis, we developed a C++ package, AIGen, based on two newly developed neural networks (i.e. kernel neural networks and functional neural networks) that are capable of modeling complex genotype-phenotype relationships (e.g. interactions) while providing robust performance against high-dimensional genetic data. Moreover, computationally efficient algorithms (e.g. a minimum norm quadratic unbiased estimation approach and batch training) are implemented in the package to accelerate the computation, making them computationally efficient for analyzing large-scale datasets with thousands or even millions of samples. By applying AIGen to the UK Biobank dataset, we demonstrate that it can efficiently analyze large-scale genetic data, attain improved accuracy, and maintain robust performance. Availability: AIGen is developed in C++ and its source code, along with reference libraries, is publicly accessible on GitHub at https://github.com/TingtHou/AIGen.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.