{"title":"探索二价金属离子的配位。揭示金黄色葡萄球菌 MntH 片段的结合模式。","authors":"Valentyn Dzyhovskyi , Maurizio Remelli , Kamila Stokowa-Sołtys","doi":"10.1016/j.jinorgbio.2024.112769","DOIUrl":null,"url":null,"abstract":"<div><div>Metal ion coordination is crucial in bacterial metabolism, while divalent metal ions serve as essential cofactors for various enzymes involved in cellular processes. Therefore, bacteria have developed sophisticated regulatory mechanisms to maintain metal homeostasis. These involve protein interactions for metal ion uptake, efflux, intracellular transport, and storage. <em>Staphylococcus aureus</em>, a member of the commensal flora, colonizes the anterior nares and skin harmlessly but can cause severe illness. MntH transporter is responsible for acquiring divalent metal ions necessary for metabolic functions and virulence. It is a 450-amino-acid protein analogous to Nramp1 (Natural Resistance-Associated Macrophage Protein 1) in mammals. Herein, the coordination modes of copper(II), iron(II), and zinc(II) ions with select fragments of the MntH were established employing potentiometry, mass spectrometry, and spectroscopic methods. Four model peptides, MNNKRHSTNE–NH<sub>2</sub>, Ac-KFDHRSS–NH<sub>2</sub>, Ac-IMPHNLYLHSSI–NH<sub>2</sub>, and Ac-YSRHNNEE–NH<sub>2</sub>, were chosen for their metal-binding capabilities and examined to determine their coordination properties and preferences. Our findings suggest that under physiological pH conditions, the N-terminal fragment of MntH demonstrates the highest thermodynamic stability with copper(II) and iron(II) ions. Furthermore, a comparison with other peptides from the <em>S. aureus</em> FeoB transporter indicates different binding affinities.</div></div>","PeriodicalId":364,"journal":{"name":"Journal of Inorganic Biochemistry","volume":"263 ","pages":"Article 112769"},"PeriodicalIF":3.8000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring divalent metal ion coordination. Unraveling binding modes in Staphylococcus aureus MntH fragments\",\"authors\":\"Valentyn Dzyhovskyi , Maurizio Remelli , Kamila Stokowa-Sołtys\",\"doi\":\"10.1016/j.jinorgbio.2024.112769\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Metal ion coordination is crucial in bacterial metabolism, while divalent metal ions serve as essential cofactors for various enzymes involved in cellular processes. Therefore, bacteria have developed sophisticated regulatory mechanisms to maintain metal homeostasis. These involve protein interactions for metal ion uptake, efflux, intracellular transport, and storage. <em>Staphylococcus aureus</em>, a member of the commensal flora, colonizes the anterior nares and skin harmlessly but can cause severe illness. MntH transporter is responsible for acquiring divalent metal ions necessary for metabolic functions and virulence. It is a 450-amino-acid protein analogous to Nramp1 (Natural Resistance-Associated Macrophage Protein 1) in mammals. Herein, the coordination modes of copper(II), iron(II), and zinc(II) ions with select fragments of the MntH were established employing potentiometry, mass spectrometry, and spectroscopic methods. Four model peptides, MNNKRHSTNE–NH<sub>2</sub>, Ac-KFDHRSS–NH<sub>2</sub>, Ac-IMPHNLYLHSSI–NH<sub>2</sub>, and Ac-YSRHNNEE–NH<sub>2</sub>, were chosen for their metal-binding capabilities and examined to determine their coordination properties and preferences. Our findings suggest that under physiological pH conditions, the N-terminal fragment of MntH demonstrates the highest thermodynamic stability with copper(II) and iron(II) ions. Furthermore, a comparison with other peptides from the <em>S. aureus</em> FeoB transporter indicates different binding affinities.</div></div>\",\"PeriodicalId\":364,\"journal\":{\"name\":\"Journal of Inorganic Biochemistry\",\"volume\":\"263 \",\"pages\":\"Article 112769\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Inorganic Biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0162013424002940\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inorganic Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0162013424002940","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Exploring divalent metal ion coordination. Unraveling binding modes in Staphylococcus aureus MntH fragments
Metal ion coordination is crucial in bacterial metabolism, while divalent metal ions serve as essential cofactors for various enzymes involved in cellular processes. Therefore, bacteria have developed sophisticated regulatory mechanisms to maintain metal homeostasis. These involve protein interactions for metal ion uptake, efflux, intracellular transport, and storage. Staphylococcus aureus, a member of the commensal flora, colonizes the anterior nares and skin harmlessly but can cause severe illness. MntH transporter is responsible for acquiring divalent metal ions necessary for metabolic functions and virulence. It is a 450-amino-acid protein analogous to Nramp1 (Natural Resistance-Associated Macrophage Protein 1) in mammals. Herein, the coordination modes of copper(II), iron(II), and zinc(II) ions with select fragments of the MntH were established employing potentiometry, mass spectrometry, and spectroscopic methods. Four model peptides, MNNKRHSTNE–NH2, Ac-KFDHRSS–NH2, Ac-IMPHNLYLHSSI–NH2, and Ac-YSRHNNEE–NH2, were chosen for their metal-binding capabilities and examined to determine their coordination properties and preferences. Our findings suggest that under physiological pH conditions, the N-terminal fragment of MntH demonstrates the highest thermodynamic stability with copper(II) and iron(II) ions. Furthermore, a comparison with other peptides from the S. aureus FeoB transporter indicates different binding affinities.
期刊介绍:
The Journal of Inorganic Biochemistry is an established international forum for research in all aspects of Biological Inorganic Chemistry. Original papers of a high scientific level are published in the form of Articles (full length papers), Short Communications, Focused Reviews and Bioinorganic Methods. Topics include: the chemistry, structure and function of metalloenzymes; the interaction of inorganic ions and molecules with proteins and nucleic acids; the synthesis and properties of coordination complexes of biological interest including both structural and functional model systems; the function of metal- containing systems in the regulation of gene expression; the role of metals in medicine; the application of spectroscopic methods to determine the structure of metallobiomolecules; the preparation and characterization of metal-based biomaterials; and related systems. The emphasis of the Journal is on the structure and mechanism of action of metallobiomolecules.