Dmitrii S. Vasilev, Nadezhda M. Dubrovskaya, Natalia L. Tumanova, Aleksandr N. Tursunov, Natalia N. Nalivaeva
{"title":"给成年 5xFAD 小鼠注射丙戊酸钠可上调肾蛋白酶的表达并改善嗅觉和记忆。","authors":"Dmitrii S. Vasilev, Nadezhda M. Dubrovskaya, Natalia L. Tumanova, Aleksandr N. Tursunov, Natalia N. Nalivaeva","doi":"10.1007/s12031-024-02287-3","DOIUrl":null,"url":null,"abstract":"<div><p>It is well known that the development of neurodegeneration, and especially Alzheimer’s disease (AD), is often accompanied by impaired olfaction which precedes memory loss. A neuropeptidase neprilysin (NEP)—a principal amyloid-degrading enzyme in the brain—was also shown to be involved in olfactory signalling. Previously we have demonstrated that 5xFAD mice develop olfactory deficit by the age of 6 months which correlated with reduced NEP expression in the brain areas involved in olfactory signalling. The aim of this study was to analyse the effect of administration of a histone deacetylase inhibitor, valproic acid (VA), to adult 5xFAD mice on their olfaction and memory as well as on brain morphology and NEP expression in the parietal cortex (PC) and hippocampus (Hip). The data obtained demonstrated that administration of VA to 7-month-old mice (200 mg/kg of body weight) for 28 days resulted in improvement of their memory in the Morris water maze as well as olfaction in the odor preference and food search tests. This correlated with increased expression of NEP in the PC and Hip as well as a reduced number of amyloid plaques in these brain areas. This strongly suggests that NEP can be considered an important therapeutic target not only in AD but also in olfactory loss.</p></div>","PeriodicalId":652,"journal":{"name":"Journal of Molecular Neuroscience","volume":"74 4","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Valproate Administration to Adult 5xFAD Mice Upregulates Expression of Neprilysin and Improves Olfaction and Memory\",\"authors\":\"Dmitrii S. Vasilev, Nadezhda M. Dubrovskaya, Natalia L. Tumanova, Aleksandr N. Tursunov, Natalia N. Nalivaeva\",\"doi\":\"10.1007/s12031-024-02287-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>It is well known that the development of neurodegeneration, and especially Alzheimer’s disease (AD), is often accompanied by impaired olfaction which precedes memory loss. A neuropeptidase neprilysin (NEP)—a principal amyloid-degrading enzyme in the brain—was also shown to be involved in olfactory signalling. Previously we have demonstrated that 5xFAD mice develop olfactory deficit by the age of 6 months which correlated with reduced NEP expression in the brain areas involved in olfactory signalling. The aim of this study was to analyse the effect of administration of a histone deacetylase inhibitor, valproic acid (VA), to adult 5xFAD mice on their olfaction and memory as well as on brain morphology and NEP expression in the parietal cortex (PC) and hippocampus (Hip). The data obtained demonstrated that administration of VA to 7-month-old mice (200 mg/kg of body weight) for 28 days resulted in improvement of their memory in the Morris water maze as well as olfaction in the odor preference and food search tests. This correlated with increased expression of NEP in the PC and Hip as well as a reduced number of amyloid plaques in these brain areas. This strongly suggests that NEP can be considered an important therapeutic target not only in AD but also in olfactory loss.</p></div>\",\"PeriodicalId\":652,\"journal\":{\"name\":\"Journal of Molecular Neuroscience\",\"volume\":\"74 4\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12031-024-02287-3\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s12031-024-02287-3","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Valproate Administration to Adult 5xFAD Mice Upregulates Expression of Neprilysin and Improves Olfaction and Memory
It is well known that the development of neurodegeneration, and especially Alzheimer’s disease (AD), is often accompanied by impaired olfaction which precedes memory loss. A neuropeptidase neprilysin (NEP)—a principal amyloid-degrading enzyme in the brain—was also shown to be involved in olfactory signalling. Previously we have demonstrated that 5xFAD mice develop olfactory deficit by the age of 6 months which correlated with reduced NEP expression in the brain areas involved in olfactory signalling. The aim of this study was to analyse the effect of administration of a histone deacetylase inhibitor, valproic acid (VA), to adult 5xFAD mice on their olfaction and memory as well as on brain morphology and NEP expression in the parietal cortex (PC) and hippocampus (Hip). The data obtained demonstrated that administration of VA to 7-month-old mice (200 mg/kg of body weight) for 28 days resulted in improvement of their memory in the Morris water maze as well as olfaction in the odor preference and food search tests. This correlated with increased expression of NEP in the PC and Hip as well as a reduced number of amyloid plaques in these brain areas. This strongly suggests that NEP can be considered an important therapeutic target not only in AD but also in olfactory loss.
期刊介绍:
The Journal of Molecular Neuroscience is committed to the rapid publication of original findings that increase our understanding of the molecular structure, function, and development of the nervous system. The criteria for acceptance of manuscripts will be scientific excellence, originality, and relevance to the field of molecular neuroscience. Manuscripts with clinical relevance are especially encouraged since the journal seeks to provide a means for accelerating the progression of basic research findings toward clinical utilization. All experiments described in the Journal of Molecular Neuroscience that involve the use of animal or human subjects must have been approved by the appropriate institutional review committee and conform to accepted ethical standards.