Miguel Sogbe, Daniel Aliseda, Paloma Sangro, Manuel de la Torre-Aláez, Bruno Sangro, Josepmaria Argemi
{"title":"通过超低通量全基因组测序检测不同癌症类型中循环肿瘤DNA的预后价值。系统综述和患者生存数据荟萃分析。","authors":"Miguel Sogbe, Daniel Aliseda, Paloma Sangro, Manuel de la Torre-Aláez, Bruno Sangro, Josepmaria Argemi","doi":"10.1093/carcin/bgae073","DOIUrl":null,"url":null,"abstract":"<p><p>Ultra-low-pass whole-genome sequencing (ULP-WGS) (≤0.5× coverage) of plasma cell-free DNA (cfDNA) has emerged as a low-cost promising tool to assess circulating tumor DNA (ctDNA) fraction. This meta-analysis aims to summarize the current findings and comprehensively investigate the prognostic value of baseline ctDNA detected by ULP-WGS in solid tumors. A systematic review was carried out by searching PubMed/MEDLINE and Scopus databases to identify eligible studies conducted between January 2014 and January 2024. Inclusion criteria comprised studies with reported overall survival (OS) and progression-free survival (PFS) outcomes across therapy-naïve patients with different solid tumors. All patients underwent baseline ULP-WGS of plasma cfDNA and were categorized as ctDNA positive (tumor fraction ≥10%) or negative (tumor fraction <10%). A one-stage meta-analysis was performed using patient-level survival data reconstructed from published articles. A Cox proportional hazards model with shared frailty was used to assess the difference in survival between arms. A total of six studies, comprising 620 patients (367 negative ctDNA and 253 positive ctDNA), were included in the OS analysis, while five studies, involving 349 patients (212 negative ctDNA and 137 positive ctDNA), were included in the PFS analysis. The meta-analysis showed that patients with baseline positive ctDNA had a significantly higher risk of death (HR = 2.60, 95% CI: 2.01-3.36) and disease progression (HR = 2.28, 95% CI: 1.71-3.05) compared to those with negative ctDNA. The presence of a positive ctDNA at baseline is associated with increased risk of death and progression in patients with same stage cancer.</p>","PeriodicalId":9446,"journal":{"name":"Carcinogenesis","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prognostic value of circulating tumor DNA in different cancer types detected by ultra-low-pass whole-genome sequencing. A systematic review and patient-level survival data meta-analysis.\",\"authors\":\"Miguel Sogbe, Daniel Aliseda, Paloma Sangro, Manuel de la Torre-Aláez, Bruno Sangro, Josepmaria Argemi\",\"doi\":\"10.1093/carcin/bgae073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ultra-low-pass whole-genome sequencing (ULP-WGS) (≤0.5× coverage) of plasma cell-free DNA (cfDNA) has emerged as a low-cost promising tool to assess circulating tumor DNA (ctDNA) fraction. This meta-analysis aims to summarize the current findings and comprehensively investigate the prognostic value of baseline ctDNA detected by ULP-WGS in solid tumors. A systematic review was carried out by searching PubMed/MEDLINE and Scopus databases to identify eligible studies conducted between January 2014 and January 2024. Inclusion criteria comprised studies with reported overall survival (OS) and progression-free survival (PFS) outcomes across therapy-naïve patients with different solid tumors. All patients underwent baseline ULP-WGS of plasma cfDNA and were categorized as ctDNA positive (tumor fraction ≥10%) or negative (tumor fraction <10%). A one-stage meta-analysis was performed using patient-level survival data reconstructed from published articles. A Cox proportional hazards model with shared frailty was used to assess the difference in survival between arms. A total of six studies, comprising 620 patients (367 negative ctDNA and 253 positive ctDNA), were included in the OS analysis, while five studies, involving 349 patients (212 negative ctDNA and 137 positive ctDNA), were included in the PFS analysis. The meta-analysis showed that patients with baseline positive ctDNA had a significantly higher risk of death (HR = 2.60, 95% CI: 2.01-3.36) and disease progression (HR = 2.28, 95% CI: 1.71-3.05) compared to those with negative ctDNA. The presence of a positive ctDNA at baseline is associated with increased risk of death and progression in patients with same stage cancer.</p>\",\"PeriodicalId\":9446,\"journal\":{\"name\":\"Carcinogenesis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carcinogenesis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/carcin/bgae073\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carcinogenesis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/carcin/bgae073","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
Prognostic value of circulating tumor DNA in different cancer types detected by ultra-low-pass whole-genome sequencing. A systematic review and patient-level survival data meta-analysis.
Ultra-low-pass whole-genome sequencing (ULP-WGS) (≤0.5× coverage) of plasma cell-free DNA (cfDNA) has emerged as a low-cost promising tool to assess circulating tumor DNA (ctDNA) fraction. This meta-analysis aims to summarize the current findings and comprehensively investigate the prognostic value of baseline ctDNA detected by ULP-WGS in solid tumors. A systematic review was carried out by searching PubMed/MEDLINE and Scopus databases to identify eligible studies conducted between January 2014 and January 2024. Inclusion criteria comprised studies with reported overall survival (OS) and progression-free survival (PFS) outcomes across therapy-naïve patients with different solid tumors. All patients underwent baseline ULP-WGS of plasma cfDNA and were categorized as ctDNA positive (tumor fraction ≥10%) or negative (tumor fraction <10%). A one-stage meta-analysis was performed using patient-level survival data reconstructed from published articles. A Cox proportional hazards model with shared frailty was used to assess the difference in survival between arms. A total of six studies, comprising 620 patients (367 negative ctDNA and 253 positive ctDNA), were included in the OS analysis, while five studies, involving 349 patients (212 negative ctDNA and 137 positive ctDNA), were included in the PFS analysis. The meta-analysis showed that patients with baseline positive ctDNA had a significantly higher risk of death (HR = 2.60, 95% CI: 2.01-3.36) and disease progression (HR = 2.28, 95% CI: 1.71-3.05) compared to those with negative ctDNA. The presence of a positive ctDNA at baseline is associated with increased risk of death and progression in patients with same stage cancer.
期刊介绍:
Carcinogenesis: Integrative Cancer Research is a multi-disciplinary journal that brings together all the varied aspects of research that will ultimately lead to the prevention of cancer in man. The journal publishes papers that warrant prompt publication in the areas of Biology, Genetics and Epigenetics (including the processes of promotion, progression, signal transduction, apoptosis, genomic instability, growth factors, cell and molecular biology, mutation, DNA repair, genetics, etc.), Cancer Biomarkers and Molecular Epidemiology (including genetic predisposition to cancer, and epidemiology), Inflammation, Microenvironment and Prevention (including molecular dosimetry, chemoprevention, nutrition and cancer, etc.), and Carcinogenesis (including oncogenes and tumor suppressor genes in carcinogenesis, therapy resistance of solid tumors, cancer mouse models, apoptosis and senescence, novel therapeutic targets and cancer drugs).