Vaishnavi Tammara, Abhilasha A Doke, Santosh Kumar Jha, Atanu Das
{"title":"解密全长 TDP-43 的单体和二聚体构象景观以及 C 端结构域的影响","authors":"Vaishnavi Tammara, Abhilasha A Doke, Santosh Kumar Jha, Atanu Das","doi":"10.1021/acschemneuro.4c00557","DOIUrl":null,"url":null,"abstract":"<p><p>The aberrant aggregation of TAR DNA-binding protein 43 kDa (TDP-43) in cells leads to the pathogenesis of multiple fatal neurodegenerative diseases. Decoding the proposed initial transition between its functional dimeric and aggregation-prone monomeric states can potentially design a viable therapeutic strategy, which is presently limited by the lack of structural detail of the full-length TDP-43. To achieve a complete understanding of such a delicate phase space, we employed a multiscale simulation approach that unearths numerous crucial features, broadly summarized in two categories: (1) state-independent features that involve inherent chain collapsibility, rugged polymorphic landscape dictated by the terminal domains, high β-sheet propensity, structural integrity preserved by backbone-based intrachain hydrogen bonds and electrostatic forces, the prominence of the C-terminal domain in the intrachain cross-domain interfaces, and equal participation of hydrophobic and hydrophilic (charged and polar) residues in cross-domain interfaces; and (2) dimerization-modulated characteristics that encompass slower collapsing dynamics, restricted polymorphic landscape, the dominance of side chains in interchain hydrogen bonds, the appearance of the N-terminal domain in the dimer interface, and the prominence of hydrophilic (specifically polar) residues in interchain homo- and cross-domain interfaces. In our work, the ill-known C-terminal domain appears as the most crucial structure-dictating domain, which preferably populates a compact conformation with a high β-sheet propensity in its isolated state stabilized by intrabackbone hydrogen bonds, and these signatures are comparatively faded in its integrated form. Validation of our simulated observables by a complementary spectroscopic approach on multiple counts ensures the robustness of the computationally predicted features of the TDP-43 aggregation landscape.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":" ","pages":"4305-4321"},"PeriodicalIF":4.1000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deciphering the Monomeric and Dimeric Conformational Landscapes of the Full-Length TDP-43 and the Impact of the C-Terminal Domain.\",\"authors\":\"Vaishnavi Tammara, Abhilasha A Doke, Santosh Kumar Jha, Atanu Das\",\"doi\":\"10.1021/acschemneuro.4c00557\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The aberrant aggregation of TAR DNA-binding protein 43 kDa (TDP-43) in cells leads to the pathogenesis of multiple fatal neurodegenerative diseases. Decoding the proposed initial transition between its functional dimeric and aggregation-prone monomeric states can potentially design a viable therapeutic strategy, which is presently limited by the lack of structural detail of the full-length TDP-43. To achieve a complete understanding of such a delicate phase space, we employed a multiscale simulation approach that unearths numerous crucial features, broadly summarized in two categories: (1) state-independent features that involve inherent chain collapsibility, rugged polymorphic landscape dictated by the terminal domains, high β-sheet propensity, structural integrity preserved by backbone-based intrachain hydrogen bonds and electrostatic forces, the prominence of the C-terminal domain in the intrachain cross-domain interfaces, and equal participation of hydrophobic and hydrophilic (charged and polar) residues in cross-domain interfaces; and (2) dimerization-modulated characteristics that encompass slower collapsing dynamics, restricted polymorphic landscape, the dominance of side chains in interchain hydrogen bonds, the appearance of the N-terminal domain in the dimer interface, and the prominence of hydrophilic (specifically polar) residues in interchain homo- and cross-domain interfaces. In our work, the ill-known C-terminal domain appears as the most crucial structure-dictating domain, which preferably populates a compact conformation with a high β-sheet propensity in its isolated state stabilized by intrabackbone hydrogen bonds, and these signatures are comparatively faded in its integrated form. Validation of our simulated observables by a complementary spectroscopic approach on multiple counts ensures the robustness of the computationally predicted features of the TDP-43 aggregation landscape.</p>\",\"PeriodicalId\":13,\"journal\":{\"name\":\"ACS Chemical Neuroscience\",\"volume\":\" \",\"pages\":\"4305-4321\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Chemical Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1021/acschemneuro.4c00557\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acschemneuro.4c00557","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/16 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
TAR DNA 结合蛋白 43 kDa(TDP-43)在细胞中的异常聚集导致了多种致命神经退行性疾病的发病机制。目前,由于缺乏全长 TDP-43 的详细结构信息,因此无法设计出可行的治疗策略。为了全面了解这样一个微妙的相空间,我们采用了一种多尺度模拟方法,发现了许多关键特征,大致可归纳为两类:(1) 与状态无关的特征,包括固有的链可折叠性、由末端结构域决定的崎岖多态景观、高β-片倾向性、由基于骨架的链内氢键和静电力保持的结构完整性、C-末端结构域在链内跨域界面中的突出地位以及疏水和亲水(带电和极性)残基在跨域界面中的平等参与;(2) 二聚化调制特征,包括较慢的塌缩动力学、受限的多态性景观、侧链在链间氢键中的主导地位、N 端结构域出现在二聚体界面中,以及亲水(特别是极性)残基在链间同域和跨域界面中的突出地位。在我们的研究中,鲜为人知的 C 端结构域是最关键的结构决定性结构域,它在孤立状态下通过背骨架内氢键的稳定而形成具有高 β 片倾向的紧凑构象,而在整合状态下这些特征则相对较弱。通过补充性光谱方法对我们的模拟观测值进行多次验证,确保了计算预测的 TDP-43 聚集景观特征的稳健性。
Deciphering the Monomeric and Dimeric Conformational Landscapes of the Full-Length TDP-43 and the Impact of the C-Terminal Domain.
The aberrant aggregation of TAR DNA-binding protein 43 kDa (TDP-43) in cells leads to the pathogenesis of multiple fatal neurodegenerative diseases. Decoding the proposed initial transition between its functional dimeric and aggregation-prone monomeric states can potentially design a viable therapeutic strategy, which is presently limited by the lack of structural detail of the full-length TDP-43. To achieve a complete understanding of such a delicate phase space, we employed a multiscale simulation approach that unearths numerous crucial features, broadly summarized in two categories: (1) state-independent features that involve inherent chain collapsibility, rugged polymorphic landscape dictated by the terminal domains, high β-sheet propensity, structural integrity preserved by backbone-based intrachain hydrogen bonds and electrostatic forces, the prominence of the C-terminal domain in the intrachain cross-domain interfaces, and equal participation of hydrophobic and hydrophilic (charged and polar) residues in cross-domain interfaces; and (2) dimerization-modulated characteristics that encompass slower collapsing dynamics, restricted polymorphic landscape, the dominance of side chains in interchain hydrogen bonds, the appearance of the N-terminal domain in the dimer interface, and the prominence of hydrophilic (specifically polar) residues in interchain homo- and cross-domain interfaces. In our work, the ill-known C-terminal domain appears as the most crucial structure-dictating domain, which preferably populates a compact conformation with a high β-sheet propensity in its isolated state stabilized by intrabackbone hydrogen bonds, and these signatures are comparatively faded in its integrated form. Validation of our simulated observables by a complementary spectroscopic approach on multiple counts ensures the robustness of the computationally predicted features of the TDP-43 aggregation landscape.
期刊介绍:
ACS Chemical Neuroscience publishes high-quality research articles and reviews that showcase chemical, quantitative biological, biophysical and bioengineering approaches to the understanding of the nervous system and to the development of new treatments for neurological disorders. Research in the journal focuses on aspects of chemical neurobiology and bio-neurochemistry such as the following:
Neurotransmitters and receptors
Neuropharmaceuticals and therapeutics
Neural development—Plasticity, and degeneration
Chemical, physical, and computational methods in neuroscience
Neuronal diseases—basis, detection, and treatment
Mechanism of aging, learning, memory and behavior
Pain and sensory processing
Neurotoxins
Neuroscience-inspired bioengineering
Development of methods in chemical neurobiology
Neuroimaging agents and technologies
Animal models for central nervous system diseases
Behavioral research