用于单幅遥感图像超分辨率的规模感知反投影变换器

IF 7.5 1区 地球科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Jinglei Hao;Wukai Li;Yuting Lu;Yang Jin;Yongqiang Zhao;Shunzhou Wang;Binglu Wang
{"title":"用于单幅遥感图像超分辨率的规模感知反投影变换器","authors":"Jinglei Hao;Wukai Li;Yuting Lu;Yang Jin;Yongqiang Zhao;Shunzhou Wang;Binglu Wang","doi":"10.1109/TGRS.2024.3499363","DOIUrl":null,"url":null,"abstract":"Backprojection networks have achieved promising super-resolution performance for nature images but not well be explored in the remote sensing image super-resolution (RSISR) field due to the high computation costs. In this article, we propose a scale-aware backprojection Transformer termed SPT for RSISR. SPT incorporates the backprojection learning strategy into a Transformer framework. It consists of scale-aware backprojection-based self-attention layers (SPALs) for scale-aware low-resolution feature learning and scale-aware backprojection-based Transformer blocks (SPTBs) for hierarchical feature learning. A backprojection-based reconstruction module (PRM) is also introduced to enhance the hierarchical features for image reconstruction. SPT stands out by efficiently learning low-resolution features without excessive modules for high-resolution processing, resulting in lower computational resources. Experimental results on UCMerced and AID datasets demonstrate that SPT obtains state-of-the-art results compared to other leading RSISR methods.","PeriodicalId":13213,"journal":{"name":"IEEE Transactions on Geoscience and Remote Sensing","volume":"62 ","pages":"1-13"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scale-Aware Backprojection Transformer for Single Remote Sensing Image Super-Resolution\",\"authors\":\"Jinglei Hao;Wukai Li;Yuting Lu;Yang Jin;Yongqiang Zhao;Shunzhou Wang;Binglu Wang\",\"doi\":\"10.1109/TGRS.2024.3499363\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Backprojection networks have achieved promising super-resolution performance for nature images but not well be explored in the remote sensing image super-resolution (RSISR) field due to the high computation costs. In this article, we propose a scale-aware backprojection Transformer termed SPT for RSISR. SPT incorporates the backprojection learning strategy into a Transformer framework. It consists of scale-aware backprojection-based self-attention layers (SPALs) for scale-aware low-resolution feature learning and scale-aware backprojection-based Transformer blocks (SPTBs) for hierarchical feature learning. A backprojection-based reconstruction module (PRM) is also introduced to enhance the hierarchical features for image reconstruction. SPT stands out by efficiently learning low-resolution features without excessive modules for high-resolution processing, resulting in lower computational resources. Experimental results on UCMerced and AID datasets demonstrate that SPT obtains state-of-the-art results compared to other leading RSISR methods.\",\"PeriodicalId\":13213,\"journal\":{\"name\":\"IEEE Transactions on Geoscience and Remote Sensing\",\"volume\":\"62 \",\"pages\":\"1-13\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Geoscience and Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10753509/\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Geoscience and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10753509/","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

反投影网络在自然图像的超分辨率方面取得了可喜的成绩,但由于计算成本较高,在遥感图像超分辨率(RSISR)领域还没有得到很好的应用。在本文中,我们提出了一种用于 RSISR 的规模感知反投影变换器(SPT)。SPT 将反向投影学习策略纳入变换器框架。它包括用于规模感知低分辨率特征学习的基于规模感知反投影的自注意层(SPAL)和用于分层特征学习的基于规模感知反投影的变换器块(SPTB)。此外,还引入了基于反投影的重建模块(PRM),以增强图像重建的层次特征。SPT 的突出特点是能有效地学习低分辨率特征,而无需过多的高分辨率处理模块,从而降低了计算资源。在 UCMerced 和 AID 数据集上的实验结果表明,与其他领先的 RSISR 方法相比,SPT 取得了最先进的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scale-Aware Backprojection Transformer for Single Remote Sensing Image Super-Resolution
Backprojection networks have achieved promising super-resolution performance for nature images but not well be explored in the remote sensing image super-resolution (RSISR) field due to the high computation costs. In this article, we propose a scale-aware backprojection Transformer termed SPT for RSISR. SPT incorporates the backprojection learning strategy into a Transformer framework. It consists of scale-aware backprojection-based self-attention layers (SPALs) for scale-aware low-resolution feature learning and scale-aware backprojection-based Transformer blocks (SPTBs) for hierarchical feature learning. A backprojection-based reconstruction module (PRM) is also introduced to enhance the hierarchical features for image reconstruction. SPT stands out by efficiently learning low-resolution features without excessive modules for high-resolution processing, resulting in lower computational resources. Experimental results on UCMerced and AID datasets demonstrate that SPT obtains state-of-the-art results compared to other leading RSISR methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Geoscience and Remote Sensing
IEEE Transactions on Geoscience and Remote Sensing 工程技术-地球化学与地球物理
CiteScore
11.50
自引率
28.00%
发文量
1912
审稿时长
4.0 months
期刊介绍: IEEE Transactions on Geoscience and Remote Sensing (TGRS) is a monthly publication that focuses on the theory, concepts, and techniques of science and engineering as applied to sensing the land, oceans, atmosphere, and space; and the processing, interpretation, and dissemination of this information.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信