Timo Sehn, Nicolai Kolb, Alexander Azzawi, Michael A. R. Meier
{"title":"通过 Friedel-Crafts 烷基化一步法高效合成含邻苯二酚聚合物及其在水净化中的应用","authors":"Timo Sehn, Nicolai Kolb, Alexander Azzawi, Michael A. R. Meier","doi":"10.1021/acs.macromol.4c02233","DOIUrl":null,"url":null,"abstract":"We herein present an efficient one-step synthesis route toward catechol containing polymers from liquid polybutadiene via a simple post polymerization modification (PPM) approach applying acid catalyzed Friedel–Crafts alkylation (FCA). Accordingly, 100% modification of polybutadiene was achieved within 30 min in bulk at 120 °C. The final structure of the polymer was analyzed by <sup>1</sup>H, <sup>13</sup>C, 2D nuclear magnetic resonance (NMR), infrared (IR), diffusion ordered spectroscopy (DOSY), and size exclusion chromatography (SEC). Material properties were investigated via thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Subsequent metal ion removal tests revealed excellent extraction efficiencies (86% ≤ M<sup><i>n</i>+</sup><sub>removal</sub> < 100%) when using the catechol containing polymer as heavy metal sorbent and thus emphasize a potential application for water purification processes.","PeriodicalId":51,"journal":{"name":"Macromolecules","volume":"30 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient One-Step Synthesis of Catechol Containing Polymers via Friedel–Crafts Alkylation and Their Use for Water Decontamination\",\"authors\":\"Timo Sehn, Nicolai Kolb, Alexander Azzawi, Michael A. R. Meier\",\"doi\":\"10.1021/acs.macromol.4c02233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We herein present an efficient one-step synthesis route toward catechol containing polymers from liquid polybutadiene via a simple post polymerization modification (PPM) approach applying acid catalyzed Friedel–Crafts alkylation (FCA). Accordingly, 100% modification of polybutadiene was achieved within 30 min in bulk at 120 °C. The final structure of the polymer was analyzed by <sup>1</sup>H, <sup>13</sup>C, 2D nuclear magnetic resonance (NMR), infrared (IR), diffusion ordered spectroscopy (DOSY), and size exclusion chromatography (SEC). Material properties were investigated via thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Subsequent metal ion removal tests revealed excellent extraction efficiencies (86% ≤ M<sup><i>n</i>+</sup><sub>removal</sub> < 100%) when using the catechol containing polymer as heavy metal sorbent and thus emphasize a potential application for water purification processes.\",\"PeriodicalId\":51,\"journal\":{\"name\":\"Macromolecules\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.macromol.4c02233\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.macromol.4c02233","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Efficient One-Step Synthesis of Catechol Containing Polymers via Friedel–Crafts Alkylation and Their Use for Water Decontamination
We herein present an efficient one-step synthesis route toward catechol containing polymers from liquid polybutadiene via a simple post polymerization modification (PPM) approach applying acid catalyzed Friedel–Crafts alkylation (FCA). Accordingly, 100% modification of polybutadiene was achieved within 30 min in bulk at 120 °C. The final structure of the polymer was analyzed by 1H, 13C, 2D nuclear magnetic resonance (NMR), infrared (IR), diffusion ordered spectroscopy (DOSY), and size exclusion chromatography (SEC). Material properties were investigated via thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Subsequent metal ion removal tests revealed excellent extraction efficiencies (86% ≤ Mn+removal < 100%) when using the catechol containing polymer as heavy metal sorbent and thus emphasize a potential application for water purification processes.
期刊介绍:
Macromolecules publishes original, fundamental, and impactful research on all aspects of polymer science. Topics of interest include synthesis (e.g., controlled polymerizations, polymerization catalysis, post polymerization modification, new monomer structures and polymer architectures, and polymerization mechanisms/kinetics analysis); phase behavior, thermodynamics, dynamic, and ordering/disordering phenomena (e.g., self-assembly, gelation, crystallization, solution/melt/solid-state characteristics); structure and properties (e.g., mechanical and rheological properties, surface/interfacial characteristics, electronic and transport properties); new state of the art characterization (e.g., spectroscopy, scattering, microscopy, rheology), simulation (e.g., Monte Carlo, molecular dynamics, multi-scale/coarse-grained modeling), and theoretical methods. Renewable/sustainable polymers, polymer networks, responsive polymers, electro-, magneto- and opto-active macromolecules, inorganic polymers, charge-transporting polymers (ion-containing, semiconducting, and conducting), nanostructured polymers, and polymer composites are also of interest. Typical papers published in Macromolecules showcase important and innovative concepts, experimental methods/observations, and theoretical/computational approaches that demonstrate a fundamental advance in the understanding of polymers.