分数时空凯勒-西格尔系统弱解的全局存在性、唯一性和 $$L^{\infty }$ -bound

IF 2.5 2区 数学 Q1 MATHEMATICS
Fei Gao, Liujie Guo, Xinyi Xie, Hui Zhan
{"title":"分数时空凯勒-西格尔系统弱解的全局存在性、唯一性和 $$L^{\\infty }$ -bound","authors":"Fei Gao, Liujie Guo, Xinyi Xie, Hui Zhan","doi":"10.1007/s13540-024-00353-6","DOIUrl":null,"url":null,"abstract":"<p>This paper studies the properties of weak solutions to a class of space-time fractional parabolic-elliptic Keller-Segel equations with logistic source terms in <span>\\({\\mathbb {R}}^{n}\\)</span>, <span>\\(n\\ge 2\\)</span>. The global existence and <span>\\(L^{\\infty }\\)</span>-bound of weak solutions are established. We mainly divide the damping coefficient into two cases: (i) <span>\\(b&gt;1-\\frac{\\alpha }{n}\\)</span>, for any initial value and birth rate; (ii) <span>\\(0&lt;b\\le 1-\\frac{\\alpha }{n}\\)</span>, for small initial value and small birth rate. The existence result is obtained by verifying the existence of a solution to the constructed regularization equation and incorporate the generalized compactness criterion of time fractional partial differential equation. At the same time, we get the <span>\\(L^{\\infty }\\)</span>-bound of weak solutions by establishing the fractional differential inequality and using the Moser iterative method. Furthermore, we prove the uniqueness of weak solutions by using the hyper-contractive estimates when the damping coefficient is strong.</p>","PeriodicalId":48928,"journal":{"name":"Fractional Calculus and Applied Analysis","volume":"24 1 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global existence, uniqueness and $$L^{\\\\infty }$$ -bound of weak solutions of fractional time-space Keller-Segel system\",\"authors\":\"Fei Gao, Liujie Guo, Xinyi Xie, Hui Zhan\",\"doi\":\"10.1007/s13540-024-00353-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper studies the properties of weak solutions to a class of space-time fractional parabolic-elliptic Keller-Segel equations with logistic source terms in <span>\\\\({\\\\mathbb {R}}^{n}\\\\)</span>, <span>\\\\(n\\\\ge 2\\\\)</span>. The global existence and <span>\\\\(L^{\\\\infty }\\\\)</span>-bound of weak solutions are established. We mainly divide the damping coefficient into two cases: (i) <span>\\\\(b&gt;1-\\\\frac{\\\\alpha }{n}\\\\)</span>, for any initial value and birth rate; (ii) <span>\\\\(0&lt;b\\\\le 1-\\\\frac{\\\\alpha }{n}\\\\)</span>, for small initial value and small birth rate. The existence result is obtained by verifying the existence of a solution to the constructed regularization equation and incorporate the generalized compactness criterion of time fractional partial differential equation. At the same time, we get the <span>\\\\(L^{\\\\infty }\\\\)</span>-bound of weak solutions by establishing the fractional differential inequality and using the Moser iterative method. Furthermore, we prove the uniqueness of weak solutions by using the hyper-contractive estimates when the damping coefficient is strong.</p>\",\"PeriodicalId\":48928,\"journal\":{\"name\":\"Fractional Calculus and Applied Analysis\",\"volume\":\"24 1 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractional Calculus and Applied Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s13540-024-00353-6\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractional Calculus and Applied Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-024-00353-6","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一类在 \({\mathbb {R}}^{n}\), \(n\ge 2\) 中具有对数源项的时空分式抛物-椭圆 Keller-Segel 方程的弱解的性质。建立了弱解的全局存在性和(L^{\infty }\ )边界。我们主要将阻尼系数分为两种情况:(i)\(b>1-\frac\{alpha }{n}\),适用于任意初值和出生率;(ii)\(0<b\le 1-\frac\{alpha }{n}\),适用于小初值和小出生率。通过验证所构造的正则化方程的解的存在性,并结合时间分式偏微分方程的广义紧凑性准则,得到了存在性结果。同时,我们通过建立分式微分不等式并使用 Moser 迭代方法得到了弱解的 \(L^{\infty }\)-bound 。此外,当阻尼系数较强时,我们利用超收缩估计证明了弱解的唯一性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global existence, uniqueness and $$L^{\infty }$$ -bound of weak solutions of fractional time-space Keller-Segel system

This paper studies the properties of weak solutions to a class of space-time fractional parabolic-elliptic Keller-Segel equations with logistic source terms in \({\mathbb {R}}^{n}\), \(n\ge 2\). The global existence and \(L^{\infty }\)-bound of weak solutions are established. We mainly divide the damping coefficient into two cases: (i) \(b>1-\frac{\alpha }{n}\), for any initial value and birth rate; (ii) \(0<b\le 1-\frac{\alpha }{n}\), for small initial value and small birth rate. The existence result is obtained by verifying the existence of a solution to the constructed regularization equation and incorporate the generalized compactness criterion of time fractional partial differential equation. At the same time, we get the \(L^{\infty }\)-bound of weak solutions by establishing the fractional differential inequality and using the Moser iterative method. Furthermore, we prove the uniqueness of weak solutions by using the hyper-contractive estimates when the damping coefficient is strong.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fractional Calculus and Applied Analysis
Fractional Calculus and Applied Analysis MATHEMATICS, APPLIED-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
4.70
自引率
16.70%
发文量
101
期刊介绍: Fractional Calculus and Applied Analysis (FCAA, abbreviated in the World databases as Fract. Calc. Appl. Anal. or FRACT CALC APPL ANAL) is a specialized international journal for theory and applications of an important branch of Mathematical Analysis (Calculus) where differentiations and integrations can be of arbitrary non-integer order. The high standards of its contents are guaranteed by the prominent members of Editorial Board and the expertise of invited external reviewers, and proven by the recently achieved high values of impact factor (JIF) and impact rang (SJR), launching the journal to top places of the ranking lists of Thomson Reuters and Scopus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信