用于太阳能光伏和蓝光检测的低温稳定 CsPbI2Br 包晶石

IF 8 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Xiaoqing Li, Xiang Chen, Xiaoxin Pan, Yongcheng Wu, Jiayun Wei, Jie Tang, Jie Pan, Zhijia Huang, Haohan Qu, Cheng Huang, Zhengrong Wei, Jun Zhang, Jinxia Duan, Hao Wang
{"title":"用于太阳能光伏和蓝光检测的低温稳定 CsPbI2Br 包晶石","authors":"Xiaoqing Li,&nbsp;Xiang Chen,&nbsp;Xiaoxin Pan,&nbsp;Yongcheng Wu,&nbsp;Jiayun Wei,&nbsp;Jie Tang,&nbsp;Jie Pan,&nbsp;Zhijia Huang,&nbsp;Haohan Qu,&nbsp;Cheng Huang,&nbsp;Zhengrong Wei,&nbsp;Jun Zhang,&nbsp;Jinxia Duan,&nbsp;Hao Wang","doi":"10.1002/adom.202401512","DOIUrl":null,"url":null,"abstract":"<p>As an inorganic halide perovskite (IHP), CsPbI<sub>2</sub>Br has generated enormous publicity due to its suitable optical bandgap (≈1.92 eV) and thermal stability. Unfortunately, the terrible phase stability of CsPbI<sub>2</sub>Br film will cause a phase change in a wet environment and decelerate light response, seriously hindering the progression of IHP photovoltaics. Herein, a synergistic postmodification strategy with CsBr and MABr to achieve high-quality CsPbI<sub>2</sub>Br film at a low-temperature (≈150 °C) and positive perovskite/carbon interface is presented. Adding a small amount of MABr can promote the crystallization of perovskite. The evaporated CsBr accumulates on the grain boundaries and surface of CsPbI<sub>2</sub>Br and forms Br-rich perovskite, which provides the protection of CsPbI<sub>2</sub>Br and segregation of water vapor. The carbon-based perovskite solar cell (C-PeSC) with the modified CsPbI<sub>2</sub>Br harvests a high power conversion efficiency (PCE) of 11.04%. Notably, the unpackaged cell maintains 81% of its original PCE after being stored for 21 days in an air atmosphere with 25–35% humidity. Flexible devices are further manufactured, whose PCE drops to 90% of the initial value during 150 bending cycles. The flexible device also exhibits excellent blue photodetection performances. The maximum responsivity and detection reach 0.68 A W<sup>−1</sup> and 8.91 × 10<sup>12</sup> Jones, respectively. These findings provide broader avenues for flexible IHP in multifunctional devices.</p>","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"12 32","pages":""},"PeriodicalIF":8.0000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low-Temperature Stable CsPbI2Br Perovskite for Solar Photovoltaics and Blue Photodetection\",\"authors\":\"Xiaoqing Li,&nbsp;Xiang Chen,&nbsp;Xiaoxin Pan,&nbsp;Yongcheng Wu,&nbsp;Jiayun Wei,&nbsp;Jie Tang,&nbsp;Jie Pan,&nbsp;Zhijia Huang,&nbsp;Haohan Qu,&nbsp;Cheng Huang,&nbsp;Zhengrong Wei,&nbsp;Jun Zhang,&nbsp;Jinxia Duan,&nbsp;Hao Wang\",\"doi\":\"10.1002/adom.202401512\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>As an inorganic halide perovskite (IHP), CsPbI<sub>2</sub>Br has generated enormous publicity due to its suitable optical bandgap (≈1.92 eV) and thermal stability. Unfortunately, the terrible phase stability of CsPbI<sub>2</sub>Br film will cause a phase change in a wet environment and decelerate light response, seriously hindering the progression of IHP photovoltaics. Herein, a synergistic postmodification strategy with CsBr and MABr to achieve high-quality CsPbI<sub>2</sub>Br film at a low-temperature (≈150 °C) and positive perovskite/carbon interface is presented. Adding a small amount of MABr can promote the crystallization of perovskite. The evaporated CsBr accumulates on the grain boundaries and surface of CsPbI<sub>2</sub>Br and forms Br-rich perovskite, which provides the protection of CsPbI<sub>2</sub>Br and segregation of water vapor. The carbon-based perovskite solar cell (C-PeSC) with the modified CsPbI<sub>2</sub>Br harvests a high power conversion efficiency (PCE) of 11.04%. Notably, the unpackaged cell maintains 81% of its original PCE after being stored for 21 days in an air atmosphere with 25–35% humidity. Flexible devices are further manufactured, whose PCE drops to 90% of the initial value during 150 bending cycles. The flexible device also exhibits excellent blue photodetection performances. The maximum responsivity and detection reach 0.68 A W<sup>−1</sup> and 8.91 × 10<sup>12</sup> Jones, respectively. These findings provide broader avenues for flexible IHP in multifunctional devices.</p>\",\"PeriodicalId\":116,\"journal\":{\"name\":\"Advanced Optical Materials\",\"volume\":\"12 32\",\"pages\":\"\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Optical Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adom.202401512\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Optical Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adom.202401512","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

作为一种无机卤化物包光体(IHP),CsPbI2Br 因其合适的光带隙(≈1.92 eV)和热稳定性而受到广泛关注。遗憾的是,CsPbI2Br 薄膜的相稳定性很差,在潮湿环境中会发生相变,降低光响应速度,严重阻碍了 IHP 光伏技术的发展。本文提出了一种 CsBr 和 MABr 的协同后改性策略,可在低温(≈150 °C)和正包晶/碳界面下获得高质量的 CsPbI2Br 薄膜。添加少量 MABr 可以促进包晶石的结晶。蒸发的 CsBr 在 CsPbI2Br 的晶界和表面积聚,形成富含 Br 的包晶,为 CsPbI2Br 提供保护并隔离水蒸气。采用改性 CsPbI2Br 的碳基磷灰石太阳能电池(C-PeSC)的功率转换效率高达 11.04%。值得注意的是,未包装的电池在湿度为 25%-35% 的空气环境中存放 21 天后,仍能保持 81% 的原始 PCE。柔性器件在进一步制造过程中,其 PCE 在 150 个弯曲周期内降至初始值的 90%。柔性器件还具有出色的蓝色光探测性能。最大响应度和检测度分别达到 0.68 A W-1 和 8.91 × 1012 Jones。这些发现为柔性 IHP 在多功能器件中的应用提供了更广阔的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low-Temperature Stable CsPbI2Br Perovskite for Solar Photovoltaics and Blue Photodetection

As an inorganic halide perovskite (IHP), CsPbI2Br has generated enormous publicity due to its suitable optical bandgap (≈1.92 eV) and thermal stability. Unfortunately, the terrible phase stability of CsPbI2Br film will cause a phase change in a wet environment and decelerate light response, seriously hindering the progression of IHP photovoltaics. Herein, a synergistic postmodification strategy with CsBr and MABr to achieve high-quality CsPbI2Br film at a low-temperature (≈150 °C) and positive perovskite/carbon interface is presented. Adding a small amount of MABr can promote the crystallization of perovskite. The evaporated CsBr accumulates on the grain boundaries and surface of CsPbI2Br and forms Br-rich perovskite, which provides the protection of CsPbI2Br and segregation of water vapor. The carbon-based perovskite solar cell (C-PeSC) with the modified CsPbI2Br harvests a high power conversion efficiency (PCE) of 11.04%. Notably, the unpackaged cell maintains 81% of its original PCE after being stored for 21 days in an air atmosphere with 25–35% humidity. Flexible devices are further manufactured, whose PCE drops to 90% of the initial value during 150 bending cycles. The flexible device also exhibits excellent blue photodetection performances. The maximum responsivity and detection reach 0.68 A W−1 and 8.91 × 1012 Jones, respectively. These findings provide broader avenues for flexible IHP in multifunctional devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Optical Materials
Advanced Optical Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-OPTICS
CiteScore
13.70
自引率
6.70%
发文量
883
审稿时长
1.5 months
期刊介绍: Advanced Optical Materials, part of the esteemed Advanced portfolio, is a unique materials science journal concentrating on all facets of light-matter interactions. For over a decade, it has been the preferred optical materials journal for significant discoveries in photonics, plasmonics, metamaterials, and more. The Advanced portfolio from Wiley is a collection of globally respected, high-impact journals that disseminate the best science from established and emerging researchers, aiding them in fulfilling their mission and amplifying the reach of their scientific discoveries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信