Jong Sung Moon, Benjamin Whitefield, Lesley Spencer, Mehran Kianinia, Madeline Hennessey, Milos Toth, Woong Bae Jeon, Je-Hyung Kim, Igor Aharonovich
{"title":"具有最佳腔体界面的光纤集成范德华量子传感器(先进光学材料 32/2024)","authors":"Jong Sung Moon, Benjamin Whitefield, Lesley Spencer, Mehran Kianinia, Madeline Hennessey, Milos Toth, Woong Bae Jeon, Je-Hyung Kim, Igor Aharonovich","doi":"10.1002/adom.202470096","DOIUrl":null,"url":null,"abstract":"<p><b>Fiber-Integrated van der Waals Quantum Sensor</b></p><p>The cover image illustrates a fiber-integrated van der Waals quantum sensor. The circular Bragg grating cavity fabricated from hexagonal boron nitride (hBN) with optically active spin defects, is integrated with an optical fiber using a deterministic transfer technique. The fiber-integrated hBN cavity enables efficient excitation and collection of signal without the need of a confocal microscope. The fiber-based quantum sensing platform may pave the way to a new generation of robust, remote, multi-functional quantum sensors. For further details, see article number 2401987 by Je-Hyung Kim, Igor Aharonovich, and co-workers.\n\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"12 32","pages":""},"PeriodicalIF":8.0000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adom.202470096","citationCount":"0","resultStr":"{\"title\":\"Fiber-Integrated van der Waals Quantum Sensor with an Optimal Cavity Interface\\t(Advanced Optical Materials 32/2024)\",\"authors\":\"Jong Sung Moon, Benjamin Whitefield, Lesley Spencer, Mehran Kianinia, Madeline Hennessey, Milos Toth, Woong Bae Jeon, Je-Hyung Kim, Igor Aharonovich\",\"doi\":\"10.1002/adom.202470096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><b>Fiber-Integrated van der Waals Quantum Sensor</b></p><p>The cover image illustrates a fiber-integrated van der Waals quantum sensor. The circular Bragg grating cavity fabricated from hexagonal boron nitride (hBN) with optically active spin defects, is integrated with an optical fiber using a deterministic transfer technique. The fiber-integrated hBN cavity enables efficient excitation and collection of signal without the need of a confocal microscope. The fiber-based quantum sensing platform may pave the way to a new generation of robust, remote, multi-functional quantum sensors. For further details, see article number 2401987 by Je-Hyung Kim, Igor Aharonovich, and co-workers.\\n\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure></p>\",\"PeriodicalId\":116,\"journal\":{\"name\":\"Advanced Optical Materials\",\"volume\":\"12 32\",\"pages\":\"\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adom.202470096\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Optical Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adom.202470096\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Optical Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adom.202470096","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Fiber-Integrated van der Waals Quantum Sensor with an Optimal Cavity Interface (Advanced Optical Materials 32/2024)
Fiber-Integrated van der Waals Quantum Sensor
The cover image illustrates a fiber-integrated van der Waals quantum sensor. The circular Bragg grating cavity fabricated from hexagonal boron nitride (hBN) with optically active spin defects, is integrated with an optical fiber using a deterministic transfer technique. The fiber-integrated hBN cavity enables efficient excitation and collection of signal without the need of a confocal microscope. The fiber-based quantum sensing platform may pave the way to a new generation of robust, remote, multi-functional quantum sensors. For further details, see article number 2401987 by Je-Hyung Kim, Igor Aharonovich, and co-workers.
期刊介绍:
Advanced Optical Materials, part of the esteemed Advanced portfolio, is a unique materials science journal concentrating on all facets of light-matter interactions. For over a decade, it has been the preferred optical materials journal for significant discoveries in photonics, plasmonics, metamaterials, and more. The Advanced portfolio from Wiley is a collection of globally respected, high-impact journals that disseminate the best science from established and emerging researchers, aiding them in fulfilling their mission and amplifying the reach of their scientific discoveries.