{"title":"利用辐射对流气候模型评估早期火星上一系列气体的温室增温潜力","authors":"Jason Jorge, Robin Wordsworth, Danica Adams","doi":"10.1029/2024JE008443","DOIUrl":null,"url":null,"abstract":"<p>Abundant geomorphological and geochemical evidence of liquid water on the surface of early Mars during the late Noachian and early Hesperian periods needs to be reconciled with a fainter young Sun. While a dense <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>C</mi>\n <mi>O</mi>\n </mrow>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\mathrm{C}\\mathrm{O}}_{2}$</annotation>\n </semantics></math> atmosphere and related warming mechanisms are potential solutions to the early Mars climate problem, further investigation is warranted. Here, we complete a comprehensive survey of the warming potential of all known greenhouse gases and perform detailed calculations for 15 different minor gas species under early Martian conditions. We find that of these 15 species, <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>H</mi>\n <mn>2</mn>\n </msub>\n <msub>\n <mi>O</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\mathrm{H}}_{2}{\\mathrm{O}}_{2}$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>H</mi>\n <mi>N</mi>\n <mi>O</mi>\n </mrow>\n <mn>3</mn>\n </msub>\n </mrow>\n <annotation> ${\\mathrm{H}\\mathrm{N}\\mathrm{O}}_{3}$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>N</mi>\n <mi>H</mi>\n </mrow>\n <mn>3</mn>\n </msub>\n </mrow>\n <annotation> ${\\mathrm{N}\\mathrm{H}}_{3}$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>S</mi>\n <mi>O</mi>\n </mrow>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\mathrm{S}\\mathrm{O}}_{2}$</annotation>\n </semantics></math>, and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <msub>\n <mi>C</mi>\n <mn>2</mn>\n </msub>\n <mi>H</mi>\n </mrow>\n <mn>4</mn>\n </msub>\n </mrow>\n <annotation> ${{\\mathrm{C}}_{\\mathrm{2}}\\mathrm{H}}_{4}$</annotation>\n </semantics></math> cause significant greenhouse warming at concentrations of <span></span><math>\n <semantics>\n <mrow>\n <mo>∼</mo>\n </mrow>\n <annotation> ${\\sim} $</annotation>\n </semantics></math> 0.1 ppmv or greater. However, the most highly effective greenhouse gas species also tend to be more condensable, soluble and vulnerable to photolytic destruction. To provide a reference for future atmospheric evolution and photochemical studies, we have made our warming potential database freely available online.</p>","PeriodicalId":16101,"journal":{"name":"Journal of Geophysical Research: Planets","volume":"129 11","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Greenhouse Warming Potential of a Suite of Gas Species on Early Mars Evaluated Using a Radiative-Convective Climate Model\",\"authors\":\"Jason Jorge, Robin Wordsworth, Danica Adams\",\"doi\":\"10.1029/2024JE008443\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Abundant geomorphological and geochemical evidence of liquid water on the surface of early Mars during the late Noachian and early Hesperian periods needs to be reconciled with a fainter young Sun. While a dense <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>C</mi>\\n <mi>O</mi>\\n </mrow>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\mathrm{C}\\\\mathrm{O}}_{2}$</annotation>\\n </semantics></math> atmosphere and related warming mechanisms are potential solutions to the early Mars climate problem, further investigation is warranted. Here, we complete a comprehensive survey of the warming potential of all known greenhouse gases and perform detailed calculations for 15 different minor gas species under early Martian conditions. We find that of these 15 species, <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>H</mi>\\n <mn>2</mn>\\n </msub>\\n <msub>\\n <mi>O</mi>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\mathrm{H}}_{2}{\\\\mathrm{O}}_{2}$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>H</mi>\\n <mi>N</mi>\\n <mi>O</mi>\\n </mrow>\\n <mn>3</mn>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\mathrm{H}\\\\mathrm{N}\\\\mathrm{O}}_{3}$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>N</mi>\\n <mi>H</mi>\\n </mrow>\\n <mn>3</mn>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\mathrm{N}\\\\mathrm{H}}_{3}$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>S</mi>\\n <mi>O</mi>\\n </mrow>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\mathrm{S}\\\\mathrm{O}}_{2}$</annotation>\\n </semantics></math>, and <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <msub>\\n <mi>C</mi>\\n <mn>2</mn>\\n </msub>\\n <mi>H</mi>\\n </mrow>\\n <mn>4</mn>\\n </msub>\\n </mrow>\\n <annotation> ${{\\\\mathrm{C}}_{\\\\mathrm{2}}\\\\mathrm{H}}_{4}$</annotation>\\n </semantics></math> cause significant greenhouse warming at concentrations of <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>∼</mo>\\n </mrow>\\n <annotation> ${\\\\sim} $</annotation>\\n </semantics></math> 0.1 ppmv or greater. However, the most highly effective greenhouse gas species also tend to be more condensable, soluble and vulnerable to photolytic destruction. To provide a reference for future atmospheric evolution and photochemical studies, we have made our warming potential database freely available online.</p>\",\"PeriodicalId\":16101,\"journal\":{\"name\":\"Journal of Geophysical Research: Planets\",\"volume\":\"129 11\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Planets\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024JE008443\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Planets","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JE008443","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
摘要
早期火星表面在诺奇纪晚期和赫斯珀纪早期存在液态水的大量地貌和地球化学证据需要与较暗的年轻太阳相协调。虽然致密的 C O 2 $\{mathrm{C}\mathrm{O}}_{2}$ 大气层和相关的变暖机制是解决早期火星气候问题的潜在方案,但仍需要进一步的研究。在这里,我们完成了对所有已知温室气体变暖潜力的全面调查,并对早期火星条件下 15 种不同的次要气体进行了详细计算。We find that of these 15 species, H 2 O 2 ${\mathrm{H}}_{2}{\mathrm{O}}_{2}$ , H N O 3 ${\mathrm{H}\mathrm{N}\mathrm{O}}_{3}$ , N H 3 ${\mathrm{N}\mathrm{H}}_{3}$ , S O 2 ${\mathrm{S}\mathrm{O}}_{2}$ , and C 2 H 4 ${{\mathrm{C}}_{\mathrm{2}}\mathrm{H}}_{4}$ cause significant greenhouse warming at concentrations of ∼ ${\sim} $ 0.1 ppmv or greater.然而,最高效的温室气体物种也往往更容易凝结、溶解和被光解破坏。为了给未来的大气演变和光化学研究提供参考,我们在网上免费提供了升温潜能值数据库。
Greenhouse Warming Potential of a Suite of Gas Species on Early Mars Evaluated Using a Radiative-Convective Climate Model
Abundant geomorphological and geochemical evidence of liquid water on the surface of early Mars during the late Noachian and early Hesperian periods needs to be reconciled with a fainter young Sun. While a dense atmosphere and related warming mechanisms are potential solutions to the early Mars climate problem, further investigation is warranted. Here, we complete a comprehensive survey of the warming potential of all known greenhouse gases and perform detailed calculations for 15 different minor gas species under early Martian conditions. We find that of these 15 species, , , , , and cause significant greenhouse warming at concentrations of 0.1 ppmv or greater. However, the most highly effective greenhouse gas species also tend to be more condensable, soluble and vulnerable to photolytic destruction. To provide a reference for future atmospheric evolution and photochemical studies, we have made our warming potential database freely available online.
期刊介绍:
The Journal of Geophysical Research Planets is dedicated to the publication of new and original research in the broad field of planetary science. Manuscripts concerning planetary geology, geophysics, geochemistry, atmospheres, and dynamics are appropriate for the journal when they increase knowledge about the processes that affect Solar System objects. Manuscripts concerning other planetary systems, exoplanets or Earth are welcome when presented in a comparative planetology perspective. Studies in the field of astrobiology will be considered when they have immediate consequences for the interpretation of planetary data. JGR: Planets does not publish manuscripts that deal with future missions and instrumentation, nor those that are primarily of an engineering interest. Instrument, calibration or data processing papers may be appropriate for the journal, but only when accompanied by scientific analysis and interpretation that increases understanding of the studied object. A manuscript that describes a new method or technique would be acceptable for JGR: Planets if it contained new and relevant scientific results obtained using the method. Review articles are generally not appropriate for JGR: Planets, but they may be considered if they form an integral part of a special issue.