Fengshou Zhang, Wenzhi Zhao, Mengke An, Xianda Shen, Jizhou Tang, Luanxiao Zhao, Hai Liu, Derek Elsworth, Hehua Zhu, Manchao He
{"title":"玄武岩裂隙流变特性揭示的浅层月震机制","authors":"Fengshou Zhang, Wenzhi Zhao, Mengke An, Xianda Shen, Jizhou Tang, Luanxiao Zhao, Hai Liu, Derek Elsworth, Hehua Zhu, Manchao He","doi":"10.1029/2024JE008370","DOIUrl":null,"url":null,"abstract":"<p>The projected evolutionary history of the Moon and observed occurrence of moonquakes suggest that brittle faulting is present in the shallow lunar crust. The main component of the lunar crust, plagioclase, shows velocity-strengthening behavior in the range of crustal temperatures. Chang'e 5 samples of lunar regolith show a mineral composition almost identical to basaltic bedrock. We measured the friction-stability characteristics of dry synthetic gouges representative of basaltic faults assumed to be present in the lunar crust. Frictional strengths are ∼0.7 and exhibit an overall velocity-strengthening response but transition to velocity-weakening at intermediate temperatures (∼200–300°C) and stresses (∼25–100 MPa). Bounding temperature profiles representative of the lunar crust suggest that moonquakes are feasible in the lunar crust. The rheological heterogeneity of mineral fragments in basalt is a potential cause of unstable sliding on faults with the related steady-state stress drop close to the minimum of the estimated dynamic stress drop. This suggests that some events with small stress drops are associated with the instability of mature basalt faults. However, observations of shallow moonquakes with high stress drop but merely moderate magnitude suggest that high degrees of healing on immature faults, small seismic nucleation lengths, or the failure of intact crust are present. We emphasize that moonquakes may arise from stress transfer and accumulation due to processes such as cooling contraction.</p>","PeriodicalId":16101,"journal":{"name":"Journal of Geophysical Research: Planets","volume":"129 11","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shallow Moonquake Mechanisms Illuminated by Rheologic Characteristics of Basaltic Gouges\",\"authors\":\"Fengshou Zhang, Wenzhi Zhao, Mengke An, Xianda Shen, Jizhou Tang, Luanxiao Zhao, Hai Liu, Derek Elsworth, Hehua Zhu, Manchao He\",\"doi\":\"10.1029/2024JE008370\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The projected evolutionary history of the Moon and observed occurrence of moonquakes suggest that brittle faulting is present in the shallow lunar crust. The main component of the lunar crust, plagioclase, shows velocity-strengthening behavior in the range of crustal temperatures. Chang'e 5 samples of lunar regolith show a mineral composition almost identical to basaltic bedrock. We measured the friction-stability characteristics of dry synthetic gouges representative of basaltic faults assumed to be present in the lunar crust. Frictional strengths are ∼0.7 and exhibit an overall velocity-strengthening response but transition to velocity-weakening at intermediate temperatures (∼200–300°C) and stresses (∼25–100 MPa). Bounding temperature profiles representative of the lunar crust suggest that moonquakes are feasible in the lunar crust. The rheological heterogeneity of mineral fragments in basalt is a potential cause of unstable sliding on faults with the related steady-state stress drop close to the minimum of the estimated dynamic stress drop. This suggests that some events with small stress drops are associated with the instability of mature basalt faults. However, observations of shallow moonquakes with high stress drop but merely moderate magnitude suggest that high degrees of healing on immature faults, small seismic nucleation lengths, or the failure of intact crust are present. We emphasize that moonquakes may arise from stress transfer and accumulation due to processes such as cooling contraction.</p>\",\"PeriodicalId\":16101,\"journal\":{\"name\":\"Journal of Geophysical Research: Planets\",\"volume\":\"129 11\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Planets\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024JE008370\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Planets","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JE008370","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Shallow Moonquake Mechanisms Illuminated by Rheologic Characteristics of Basaltic Gouges
The projected evolutionary history of the Moon and observed occurrence of moonquakes suggest that brittle faulting is present in the shallow lunar crust. The main component of the lunar crust, plagioclase, shows velocity-strengthening behavior in the range of crustal temperatures. Chang'e 5 samples of lunar regolith show a mineral composition almost identical to basaltic bedrock. We measured the friction-stability characteristics of dry synthetic gouges representative of basaltic faults assumed to be present in the lunar crust. Frictional strengths are ∼0.7 and exhibit an overall velocity-strengthening response but transition to velocity-weakening at intermediate temperatures (∼200–300°C) and stresses (∼25–100 MPa). Bounding temperature profiles representative of the lunar crust suggest that moonquakes are feasible in the lunar crust. The rheological heterogeneity of mineral fragments in basalt is a potential cause of unstable sliding on faults with the related steady-state stress drop close to the minimum of the estimated dynamic stress drop. This suggests that some events with small stress drops are associated with the instability of mature basalt faults. However, observations of shallow moonquakes with high stress drop but merely moderate magnitude suggest that high degrees of healing on immature faults, small seismic nucleation lengths, or the failure of intact crust are present. We emphasize that moonquakes may arise from stress transfer and accumulation due to processes such as cooling contraction.
期刊介绍:
The Journal of Geophysical Research Planets is dedicated to the publication of new and original research in the broad field of planetary science. Manuscripts concerning planetary geology, geophysics, geochemistry, atmospheres, and dynamics are appropriate for the journal when they increase knowledge about the processes that affect Solar System objects. Manuscripts concerning other planetary systems, exoplanets or Earth are welcome when presented in a comparative planetology perspective. Studies in the field of astrobiology will be considered when they have immediate consequences for the interpretation of planetary data. JGR: Planets does not publish manuscripts that deal with future missions and instrumentation, nor those that are primarily of an engineering interest. Instrument, calibration or data processing papers may be appropriate for the journal, but only when accompanied by scientific analysis and interpretation that increases understanding of the studied object. A manuscript that describes a new method or technique would be acceptable for JGR: Planets if it contained new and relevant scientific results obtained using the method. Review articles are generally not appropriate for JGR: Planets, but they may be considered if they form an integral part of a special issue.