{"title":"通过 reseek 进行蛋白质结构比对可提高对远端同源物的敏感性。","authors":"Robert C Edgar","doi":"10.1093/bioinformatics/btae687","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Recent breakthroughs in protein fold prediction from amino acid sequences have unleashed a deluge of new structures, presenting new opportunities and challenges to bioinformatics.</p><p><strong>Results: </strong>Reseek is a novel protein structure alignment algorithm based on sequence alignment where each residue in the protein backbone is represented by a letter in a \"mega-alphabet\" of 85,899,345,920 (∼1011) distinct states. Reseek achieves substantially improved sensitivity to remote homologs compared to state-of-the-art methods including DALI, TMalign and Foldseek, with comparable speed to Foldseek, the fastest previous method. Scaling to large databases of AI-predicted folds is analyzed. Foldseek E-values are shown to be under-estimated by several orders of magnitude, while Reseek E-values are in good agreement with measured error rates.</p><p><strong>Availability: </strong>https://github.com/rcedgar/reseek.</p><p><strong>Supplementary information: </strong>Supplementary data are available at Bioinformatics online.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Protein structure alignment by reseek improves sensitivity to remote homologs.\",\"authors\":\"Robert C Edgar\",\"doi\":\"10.1093/bioinformatics/btae687\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Motivation: </strong>Recent breakthroughs in protein fold prediction from amino acid sequences have unleashed a deluge of new structures, presenting new opportunities and challenges to bioinformatics.</p><p><strong>Results: </strong>Reseek is a novel protein structure alignment algorithm based on sequence alignment where each residue in the protein backbone is represented by a letter in a \\\"mega-alphabet\\\" of 85,899,345,920 (∼1011) distinct states. Reseek achieves substantially improved sensitivity to remote homologs compared to state-of-the-art methods including DALI, TMalign and Foldseek, with comparable speed to Foldseek, the fastest previous method. Scaling to large databases of AI-predicted folds is analyzed. Foldseek E-values are shown to be under-estimated by several orders of magnitude, while Reseek E-values are in good agreement with measured error rates.</p><p><strong>Availability: </strong>https://github.com/rcedgar/reseek.</p><p><strong>Supplementary information: </strong>Supplementary data are available at Bioinformatics online.</p>\",\"PeriodicalId\":93899,\"journal\":{\"name\":\"Bioinformatics (Oxford, England)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics (Oxford, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/bioinformatics/btae687\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btae687","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Protein structure alignment by reseek improves sensitivity to remote homologs.
Motivation: Recent breakthroughs in protein fold prediction from amino acid sequences have unleashed a deluge of new structures, presenting new opportunities and challenges to bioinformatics.
Results: Reseek is a novel protein structure alignment algorithm based on sequence alignment where each residue in the protein backbone is represented by a letter in a "mega-alphabet" of 85,899,345,920 (∼1011) distinct states. Reseek achieves substantially improved sensitivity to remote homologs compared to state-of-the-art methods including DALI, TMalign and Foldseek, with comparable speed to Foldseek, the fastest previous method. Scaling to large databases of AI-predicted folds is analyzed. Foldseek E-values are shown to be under-estimated by several orders of magnitude, while Reseek E-values are in good agreement with measured error rates.
Availability: https://github.com/rcedgar/reseek.
Supplementary information: Supplementary data are available at Bioinformatics online.