Andrey G Tyshchenko, Mikhail A Sorokin, Sergey B Kozitskiy, Pavel S Petrov
{"title":"用模式抛物方程法解决环境影响评估中的声传播模型问题a).","authors":"Andrey G Tyshchenko, Mikhail A Sorokin, Sergey B Kozitskiy, Pavel S Petrov","doi":"10.1121/10.0034424","DOIUrl":null,"url":null,"abstract":"<p><p>The method of sound propagation modeling based on the mode parabolic equations (MPEs) theory is applied to the verification scenarios for environmental impact assessment. The results for selected scenarios from the 2022 Cambridge Joint Industry Programme Acoustic Modelling Workshop and the configuration of the computational programs AMPLE and MPE for these scenarios is discussed. Furthermore, it is revealed how the results for these scenarios change in the case of the bottom slope across and along the propagation path. It is observed that for the cross-slope propagation scenario, the distribution of acoustic energy over decidecade frequency bands does not depend on the slope angle and is practically the same as that for range-independent environment. At the same time, the dependence of energy distribution is noticeable for up- and downslope propagation scenarios, where greater slope angles result in higher propagation loss. It is also shown that MPEs are capable of adequately handling typical sound propagation problems related to the environmental impact assessment for frequencies up to 1000 Hz. A possibility of using frequency-dependent mesh size and number of modes must be implemented in codes based on this approach.</p>","PeriodicalId":17168,"journal":{"name":"Journal of the Acoustical Society of America","volume":"156 5","pages":"3306-3319"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The solution of sound propagation modeling problems for environment impact assessment by the mode parabolic equations methoda).\",\"authors\":\"Andrey G Tyshchenko, Mikhail A Sorokin, Sergey B Kozitskiy, Pavel S Petrov\",\"doi\":\"10.1121/10.0034424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The method of sound propagation modeling based on the mode parabolic equations (MPEs) theory is applied to the verification scenarios for environmental impact assessment. The results for selected scenarios from the 2022 Cambridge Joint Industry Programme Acoustic Modelling Workshop and the configuration of the computational programs AMPLE and MPE for these scenarios is discussed. Furthermore, it is revealed how the results for these scenarios change in the case of the bottom slope across and along the propagation path. It is observed that for the cross-slope propagation scenario, the distribution of acoustic energy over decidecade frequency bands does not depend on the slope angle and is practically the same as that for range-independent environment. At the same time, the dependence of energy distribution is noticeable for up- and downslope propagation scenarios, where greater slope angles result in higher propagation loss. It is also shown that MPEs are capable of adequately handling typical sound propagation problems related to the environmental impact assessment for frequencies up to 1000 Hz. A possibility of using frequency-dependent mesh size and number of modes must be implemented in codes based on this approach.</p>\",\"PeriodicalId\":17168,\"journal\":{\"name\":\"Journal of the Acoustical Society of America\",\"volume\":\"156 5\",\"pages\":\"3306-3319\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Acoustical Society of America\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1121/10.0034424\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Acoustical Society of America","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1121/10.0034424","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
The solution of sound propagation modeling problems for environment impact assessment by the mode parabolic equations methoda).
The method of sound propagation modeling based on the mode parabolic equations (MPEs) theory is applied to the verification scenarios for environmental impact assessment. The results for selected scenarios from the 2022 Cambridge Joint Industry Programme Acoustic Modelling Workshop and the configuration of the computational programs AMPLE and MPE for these scenarios is discussed. Furthermore, it is revealed how the results for these scenarios change in the case of the bottom slope across and along the propagation path. It is observed that for the cross-slope propagation scenario, the distribution of acoustic energy over decidecade frequency bands does not depend on the slope angle and is practically the same as that for range-independent environment. At the same time, the dependence of energy distribution is noticeable for up- and downslope propagation scenarios, where greater slope angles result in higher propagation loss. It is also shown that MPEs are capable of adequately handling typical sound propagation problems related to the environmental impact assessment for frequencies up to 1000 Hz. A possibility of using frequency-dependent mesh size and number of modes must be implemented in codes based on this approach.
期刊介绍:
Since 1929 The Journal of the Acoustical Society of America has been the leading source of theoretical and experimental research results in the broad interdisciplinary study of sound. Subject coverage includes: linear and nonlinear acoustics; aeroacoustics, underwater sound and acoustical oceanography; ultrasonics and quantum acoustics; architectural and structural acoustics and vibration; speech, music and noise; psychology and physiology of hearing; engineering acoustics, transduction; bioacoustics, animal bioacoustics.