S 状态多数票模型上的可调无序。

IF 2.7 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2024-11-01 DOI:10.1063/5.0212444
Francisco I A do Nascimento, Cesar I N Sampaio Filho, André A Moreira, Hans J Herrmann, José S Andrade
{"title":"S 状态多数票模型上的可调无序。","authors":"Francisco I A do Nascimento, Cesar I N Sampaio Filho, André A Moreira, Hans J Herrmann, José S Andrade","doi":"10.1063/5.0212444","DOIUrl":null,"url":null,"abstract":"<p><p>We investigate the nonequilibrium phase transition in the S-state majority-vote model for S=2,3, and 4. Each site, k, is characterized by a distinct noise threshold, qk, which indicates its resistance to adopting the majority state of its Nv nearest neighbors. Precisely, this noise threshold is governed by a hyperbolic distribution, P(k)∼1/k, bounded within the limits e-α/2<qk<1/2. Here, the parameter α plays a pivotal role as it determines the extent of disorder in the system through the spread of the threshold distribution. Through Monte Carlo simulations and finite-size scaling analyses on regular square lattices, we deduced that the model undergoes a continuous order-disorder phase transition at a specific α=αc. Interestingly, the critical threshold exhibits a power-law decay, αc∼Nv-δ, as the number Nv of neighboring sites increases. From the least square fits to the data sets results in δ=0.65±0.01 for S=2, δ=0.92±0.01 for S=3, and δ=0.93±0.01 for S=4. Furthermore, the critical exponents β/ν and γ/ν are consistent with those found in the S-state Potts model.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"34 11","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tunable disorder on the S-state majority-voter model.\",\"authors\":\"Francisco I A do Nascimento, Cesar I N Sampaio Filho, André A Moreira, Hans J Herrmann, José S Andrade\",\"doi\":\"10.1063/5.0212444\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We investigate the nonequilibrium phase transition in the S-state majority-vote model for S=2,3, and 4. Each site, k, is characterized by a distinct noise threshold, qk, which indicates its resistance to adopting the majority state of its Nv nearest neighbors. Precisely, this noise threshold is governed by a hyperbolic distribution, P(k)∼1/k, bounded within the limits e-α/2<qk<1/2. Here, the parameter α plays a pivotal role as it determines the extent of disorder in the system through the spread of the threshold distribution. Through Monte Carlo simulations and finite-size scaling analyses on regular square lattices, we deduced that the model undergoes a continuous order-disorder phase transition at a specific α=αc. Interestingly, the critical threshold exhibits a power-law decay, αc∼Nv-δ, as the number Nv of neighboring sites increases. From the least square fits to the data sets results in δ=0.65±0.01 for S=2, δ=0.92±0.01 for S=3, and δ=0.93±0.01 for S=4. Furthermore, the critical exponents β/ν and γ/ν are consistent with those found in the S-state Potts model.</p>\",\"PeriodicalId\":9974,\"journal\":{\"name\":\"Chaos\",\"volume\":\"34 11\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0212444\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0212444","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了 S 状态多数票模型中 S=2、3 和 4 的非平衡相变。每个站点 k 都有一个不同的噪声阈值 qk,它表示站点在采用 Nv 个近邻的多数票状态时的阻力。准确地说,该噪声阈值受双曲线分布 P(k)∼1/k 的控制,其边界在 e-α/2 的范围内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tunable disorder on the S-state majority-voter model.

We investigate the nonequilibrium phase transition in the S-state majority-vote model for S=2,3, and 4. Each site, k, is characterized by a distinct noise threshold, qk, which indicates its resistance to adopting the majority state of its Nv nearest neighbors. Precisely, this noise threshold is governed by a hyperbolic distribution, P(k)∼1/k, bounded within the limits e-α/2

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信