{"title":"在多维连续空间建立局部适应性等位基因","authors":"Takahiro Sakamoto","doi":"10.1093/g3journal/jkae266","DOIUrl":null,"url":null,"abstract":"<p><p>Local adaptation is widely seen when species adapt to spatially heterogeneous environments. Although many theoretical studies have investigated the dynamics of local adaptation using two-population models, there remains a need to extend the theoretical framework to continuous space settings, reflecting the real habitats of species. In this study, we use a multidimensional continuous space model and mathematically analyze the establishment process of local adaptation, with a specific emphasis on the relative roles of mutation and migration. First, the role of new mutations is evaluated by deriving the establishment probability of a locally adapted mutation using a branching process and a diffusion approximation. Next, the contribution of immigrants from a neighboring region with similar environmental conditions is considered. Theoretical predictions of the local adaptation rate agreed with the results of Wright-Fisher simulations in both mutation-driven and migration-driven cases. Evolutionary dynamics depend on several factors, including the strength of migration and selection, population density, habitat size, and spatial dimensions. These results offer a theoretical framework for assessing whether mutation or migration predominantly drives convergent local adaptation in spatially continuous environments in the presence of patchy regions with similar environmental conditions.</p>","PeriodicalId":12468,"journal":{"name":"G3: Genes|Genomes|Genetics","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Establishment of a locally adaptive allele in multidimensional continuous space.\",\"authors\":\"Takahiro Sakamoto\",\"doi\":\"10.1093/g3journal/jkae266\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Local adaptation is widely seen when species adapt to spatially heterogeneous environments. Although many theoretical studies have investigated the dynamics of local adaptation using two-population models, there remains a need to extend the theoretical framework to continuous space settings, reflecting the real habitats of species. In this study, we use a multidimensional continuous space model and mathematically analyze the establishment process of local adaptation, with a specific emphasis on the relative roles of mutation and migration. First, the role of new mutations is evaluated by deriving the establishment probability of a locally adapted mutation using a branching process and a diffusion approximation. Next, the contribution of immigrants from a neighboring region with similar environmental conditions is considered. Theoretical predictions of the local adaptation rate agreed with the results of Wright-Fisher simulations in both mutation-driven and migration-driven cases. Evolutionary dynamics depend on several factors, including the strength of migration and selection, population density, habitat size, and spatial dimensions. These results offer a theoretical framework for assessing whether mutation or migration predominantly drives convergent local adaptation in spatially continuous environments in the presence of patchy regions with similar environmental conditions.</p>\",\"PeriodicalId\":12468,\"journal\":{\"name\":\"G3: Genes|Genomes|Genetics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"G3: Genes|Genomes|Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/g3journal/jkae266\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"G3: Genes|Genomes|Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/g3journal/jkae266","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Establishment of a locally adaptive allele in multidimensional continuous space.
Local adaptation is widely seen when species adapt to spatially heterogeneous environments. Although many theoretical studies have investigated the dynamics of local adaptation using two-population models, there remains a need to extend the theoretical framework to continuous space settings, reflecting the real habitats of species. In this study, we use a multidimensional continuous space model and mathematically analyze the establishment process of local adaptation, with a specific emphasis on the relative roles of mutation and migration. First, the role of new mutations is evaluated by deriving the establishment probability of a locally adapted mutation using a branching process and a diffusion approximation. Next, the contribution of immigrants from a neighboring region with similar environmental conditions is considered. Theoretical predictions of the local adaptation rate agreed with the results of Wright-Fisher simulations in both mutation-driven and migration-driven cases. Evolutionary dynamics depend on several factors, including the strength of migration and selection, population density, habitat size, and spatial dimensions. These results offer a theoretical framework for assessing whether mutation or migration predominantly drives convergent local adaptation in spatially continuous environments in the presence of patchy regions with similar environmental conditions.
期刊介绍:
G3: Genes, Genomes, Genetics provides a forum for the publication of high‐quality foundational research, particularly research that generates useful genetic and genomic information such as genome maps, single gene studies, genome‐wide association and QTL studies, as well as genome reports, mutant screens, and advances in methods and technology. The Editorial Board of G3 believes that rapid dissemination of these data is the necessary foundation for analysis that leads to mechanistic insights.
G3, published by the Genetics Society of America, meets the critical and growing need of the genetics community for rapid review and publication of important results in all areas of genetics. G3 offers the opportunity to publish the puzzling finding or to present unpublished results that may not have been submitted for review and publication due to a perceived lack of a potential high-impact finding. G3 has earned the DOAJ Seal, which is a mark of certification for open access journals, awarded by DOAJ to journals that achieve a high level of openness, adhere to Best Practice and high publishing standards.