Gonzalo S Nido, Martina Castelli, Sepideh Mostafavi, Anna Rubiolo, Omnia Shadad, Guido Alves, Ole-Bjørn Tysnes, Irene H Flønes, Christian Dölle, Charalampos Tzoulis
{"title":"单核转录组学揭示了α-突触核蛋白病的疾病和病理特异性特征。","authors":"Gonzalo S Nido, Martina Castelli, Sepideh Mostafavi, Anna Rubiolo, Omnia Shadad, Guido Alves, Ole-Bjørn Tysnes, Irene H Flønes, Christian Dölle, Charalampos Tzoulis","doi":"10.1093/brain/awae355","DOIUrl":null,"url":null,"abstract":"<p><p>α-Synucleinopathies are progressive neurodegenerative disorders characterized by intracellular aggregation of α-synuclein, but their molecular pathogenesis remains unknown. Here, we explore cell-specific changes in gene expression across different α-synucleinopathies. We perform single-nucleus RNA sequencing on nearly 300 000 nuclei from the prefrontal cortex of individuals with idiopathic Parkinson's disease (PD, n = 20), Parkinson's disease caused by LRRK2 mutations (LRRK2-PD, n = 7), multiple system atrophy (n = 6) and healthy controls (n = 13). Idiopathic PD and LRRK2-PD exhibit a largely overlapping cell type-specific signature, which is distinct from that of multiple system atrophy and includes an overall decrease of the transcriptional output in neurons. Notably, most of the differential expression signal in idiopathic PD and LRRK2-PD is concentrated in a specific deep cortical neuronal subtype expressing adrenoceptor alpha 2A. Although most differentially expressed genes are highly cell type and disease specific, PDE10A is found to be downregulated consistently in most cortical neurons and across all three diseases. Finally, exploiting the variable presence and/or severity of α-synuclein pathology in LRRK2-PD and idiopathic PD, we identify cell type-specific signatures associated with α-synuclein pathology, including a neuronal upregulation of SNCA itself, encoding α-synuclein. Our findings provide new insights into the cell-specific transcriptional landscape of the α-synucleinopathy spectrum.</p>","PeriodicalId":9063,"journal":{"name":"Brain","volume":" ","pages":"1588-1603"},"PeriodicalIF":10.6000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12073976/pdf/","citationCount":"0","resultStr":"{\"title\":\"Single-nucleus transcriptomics reveals disease- and pathology-specific signatures in α-synucleinopathies.\",\"authors\":\"Gonzalo S Nido, Martina Castelli, Sepideh Mostafavi, Anna Rubiolo, Omnia Shadad, Guido Alves, Ole-Bjørn Tysnes, Irene H Flønes, Christian Dölle, Charalampos Tzoulis\",\"doi\":\"10.1093/brain/awae355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>α-Synucleinopathies are progressive neurodegenerative disorders characterized by intracellular aggregation of α-synuclein, but their molecular pathogenesis remains unknown. Here, we explore cell-specific changes in gene expression across different α-synucleinopathies. We perform single-nucleus RNA sequencing on nearly 300 000 nuclei from the prefrontal cortex of individuals with idiopathic Parkinson's disease (PD, n = 20), Parkinson's disease caused by LRRK2 mutations (LRRK2-PD, n = 7), multiple system atrophy (n = 6) and healthy controls (n = 13). Idiopathic PD and LRRK2-PD exhibit a largely overlapping cell type-specific signature, which is distinct from that of multiple system atrophy and includes an overall decrease of the transcriptional output in neurons. Notably, most of the differential expression signal in idiopathic PD and LRRK2-PD is concentrated in a specific deep cortical neuronal subtype expressing adrenoceptor alpha 2A. Although most differentially expressed genes are highly cell type and disease specific, PDE10A is found to be downregulated consistently in most cortical neurons and across all three diseases. Finally, exploiting the variable presence and/or severity of α-synuclein pathology in LRRK2-PD and idiopathic PD, we identify cell type-specific signatures associated with α-synuclein pathology, including a neuronal upregulation of SNCA itself, encoding α-synuclein. Our findings provide new insights into the cell-specific transcriptional landscape of the α-synucleinopathy spectrum.</p>\",\"PeriodicalId\":9063,\"journal\":{\"name\":\"Brain\",\"volume\":\" \",\"pages\":\"1588-1603\"},\"PeriodicalIF\":10.6000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12073976/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/brain/awae355\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/brain/awae355","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Single-nucleus transcriptomics reveals disease- and pathology-specific signatures in α-synucleinopathies.
α-Synucleinopathies are progressive neurodegenerative disorders characterized by intracellular aggregation of α-synuclein, but their molecular pathogenesis remains unknown. Here, we explore cell-specific changes in gene expression across different α-synucleinopathies. We perform single-nucleus RNA sequencing on nearly 300 000 nuclei from the prefrontal cortex of individuals with idiopathic Parkinson's disease (PD, n = 20), Parkinson's disease caused by LRRK2 mutations (LRRK2-PD, n = 7), multiple system atrophy (n = 6) and healthy controls (n = 13). Idiopathic PD and LRRK2-PD exhibit a largely overlapping cell type-specific signature, which is distinct from that of multiple system atrophy and includes an overall decrease of the transcriptional output in neurons. Notably, most of the differential expression signal in idiopathic PD and LRRK2-PD is concentrated in a specific deep cortical neuronal subtype expressing adrenoceptor alpha 2A. Although most differentially expressed genes are highly cell type and disease specific, PDE10A is found to be downregulated consistently in most cortical neurons and across all three diseases. Finally, exploiting the variable presence and/or severity of α-synuclein pathology in LRRK2-PD and idiopathic PD, we identify cell type-specific signatures associated with α-synuclein pathology, including a neuronal upregulation of SNCA itself, encoding α-synuclein. Our findings provide new insights into the cell-specific transcriptional landscape of the α-synucleinopathy spectrum.
期刊介绍:
Brain, a journal focused on clinical neurology and translational neuroscience, has been publishing landmark papers since 1878. The journal aims to expand its scope by including studies that shed light on disease mechanisms and conducting innovative clinical trials for brain disorders. With a wide range of topics covered, the Editorial Board represents the international readership and diverse coverage of the journal. Accepted articles are promptly posted online, typically within a few weeks of acceptance. As of 2022, Brain holds an impressive impact factor of 14.5, according to the Journal Citation Reports.