Anne-Charlotte Dubbelman, Bo van Wieringen, Lesley Roman Arias, Michael van Vliet, Roel Vermeulen, Amy C Harms, Thomas Hankemeier
{"title":"在基于液相色谱-质谱联用仪的定量代谢组学中使用柱后注入标准品校正基质效应的策略。","authors":"Anne-Charlotte Dubbelman, Bo van Wieringen, Lesley Roman Arias, Michael van Vliet, Roel Vermeulen, Amy C Harms, Thomas Hankemeier","doi":"10.1021/jasms.4c00408","DOIUrl":null,"url":null,"abstract":"<p><p>The matrix effect limits the accuracy of quantitation of the otherwise popular metabolomics technique liquid chromatography coupled to mass spectrometry (LC-MS). The gold standard to correct for this phenomenon, whereby compounds coeluting with the analyte of interest cause ionization enhancement or suppression, is to quantify an analyte based on the peak area ratio with an isotopologue added to the sample as an internal standard. However, these stable isotopes are expensive and sometimes unavailable. Here, we describe an alternative approach: matrix effect correction and quantifying analytes using a signal ratio with a postcolumn infused standard (PCIS). Using an LC-MS/MS method for eight endocannabinoids and related metabolites in plasma, we provide strategies to select, optimize, and evaluate PCIS candidates. Based on seven characteristics, the structural endocannabinoid analogue arachidonoyl-2'-fluoroethylamide was selected as a PCIS. Three methods to evaluate the PCIS correction vs no correction showed that PCIS correction improved values for the matrix effect, precision, and dilutional linearity of at least six of the analytes to within acceptable ranges. PCIS correction also resulted in parallelization of calibration curves in plasma and neat solution, for six of eight analytes even with higher accuracy than peak area ratio correction with their stable isotope labeled internal standard, i.e., the gold standard. This enables quantification based on neat solutions, which is a significant step toward absolute quantification. We conclude that PCIS has great, but so far underappreciated, potential in accurate LC-MS quantification.</p>","PeriodicalId":672,"journal":{"name":"Journal of the American Society for Mass Spectrometry","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strategies for Using Postcolumn Infusion of Standards to Correct for Matrix Effect in LC-MS-Based Quantitative Metabolomics.\",\"authors\":\"Anne-Charlotte Dubbelman, Bo van Wieringen, Lesley Roman Arias, Michael van Vliet, Roel Vermeulen, Amy C Harms, Thomas Hankemeier\",\"doi\":\"10.1021/jasms.4c00408\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The matrix effect limits the accuracy of quantitation of the otherwise popular metabolomics technique liquid chromatography coupled to mass spectrometry (LC-MS). The gold standard to correct for this phenomenon, whereby compounds coeluting with the analyte of interest cause ionization enhancement or suppression, is to quantify an analyte based on the peak area ratio with an isotopologue added to the sample as an internal standard. However, these stable isotopes are expensive and sometimes unavailable. Here, we describe an alternative approach: matrix effect correction and quantifying analytes using a signal ratio with a postcolumn infused standard (PCIS). Using an LC-MS/MS method for eight endocannabinoids and related metabolites in plasma, we provide strategies to select, optimize, and evaluate PCIS candidates. Based on seven characteristics, the structural endocannabinoid analogue arachidonoyl-2'-fluoroethylamide was selected as a PCIS. Three methods to evaluate the PCIS correction vs no correction showed that PCIS correction improved values for the matrix effect, precision, and dilutional linearity of at least six of the analytes to within acceptable ranges. PCIS correction also resulted in parallelization of calibration curves in plasma and neat solution, for six of eight analytes even with higher accuracy than peak area ratio correction with their stable isotope labeled internal standard, i.e., the gold standard. This enables quantification based on neat solutions, which is a significant step toward absolute quantification. We conclude that PCIS has great, but so far underappreciated, potential in accurate LC-MS quantification.</p>\",\"PeriodicalId\":672,\"journal\":{\"name\":\"Journal of the American Society for Mass Spectrometry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Society for Mass Spectrometry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/jasms.4c00408\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Society for Mass Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jasms.4c00408","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Strategies for Using Postcolumn Infusion of Standards to Correct for Matrix Effect in LC-MS-Based Quantitative Metabolomics.
The matrix effect limits the accuracy of quantitation of the otherwise popular metabolomics technique liquid chromatography coupled to mass spectrometry (LC-MS). The gold standard to correct for this phenomenon, whereby compounds coeluting with the analyte of interest cause ionization enhancement or suppression, is to quantify an analyte based on the peak area ratio with an isotopologue added to the sample as an internal standard. However, these stable isotopes are expensive and sometimes unavailable. Here, we describe an alternative approach: matrix effect correction and quantifying analytes using a signal ratio with a postcolumn infused standard (PCIS). Using an LC-MS/MS method for eight endocannabinoids and related metabolites in plasma, we provide strategies to select, optimize, and evaluate PCIS candidates. Based on seven characteristics, the structural endocannabinoid analogue arachidonoyl-2'-fluoroethylamide was selected as a PCIS. Three methods to evaluate the PCIS correction vs no correction showed that PCIS correction improved values for the matrix effect, precision, and dilutional linearity of at least six of the analytes to within acceptable ranges. PCIS correction also resulted in parallelization of calibration curves in plasma and neat solution, for six of eight analytes even with higher accuracy than peak area ratio correction with their stable isotope labeled internal standard, i.e., the gold standard. This enables quantification based on neat solutions, which is a significant step toward absolute quantification. We conclude that PCIS has great, but so far underappreciated, potential in accurate LC-MS quantification.
期刊介绍:
The Journal of the American Society for Mass Spectrometry presents research papers covering all aspects of mass spectrometry, incorporating coverage of fields of scientific inquiry in which mass spectrometry can play a role.
Comprehensive in scope, the journal publishes papers on both fundamentals and applications of mass spectrometry. Fundamental subjects include instrumentation principles, design, and demonstration, structures and chemical properties of gas-phase ions, studies of thermodynamic properties, ion spectroscopy, chemical kinetics, mechanisms of ionization, theories of ion fragmentation, cluster ions, and potential energy surfaces. In addition to full papers, the journal offers Communications, Application Notes, and Accounts and Perspectives