Valeria Poggetti, Elisa Angeloni, Lorenzo Germelli, Benito Natale, Muhammad Waqas, Giuliana Sarno, Andrea Angeli, Simona Daniele, Silvia Salerno, Elisabetta Barresi, Sandro Cosconati, Sabrina Castellano, Eleonora Da Pozzo, Barbara Costa, Claudiu T Supuran, Federico Da Settimo, Sabrina Taliani
{"title":"发现第一类具有良好神经营养活性的 TSPO/碳酸酐酶双重调节剂","authors":"Valeria Poggetti, Elisa Angeloni, Lorenzo Germelli, Benito Natale, Muhammad Waqas, Giuliana Sarno, Andrea Angeli, Simona Daniele, Silvia Salerno, Elisabetta Barresi, Sandro Cosconati, Sabrina Castellano, Eleonora Da Pozzo, Barbara Costa, Claudiu T Supuran, Federico Da Settimo, Sabrina Taliani","doi":"10.1021/acschemneuro.4c00477","DOIUrl":null,"url":null,"abstract":"<p><p>In searching for putative new therapeutic strategies to treat neurodegenerative diseases, the mitochondrial 18 kDa translocator protein (TSPO) and cerebral isoforms of carbonic anhydrase (CA) were exploited as potential targets. Based on the structures of a class of highly affine and selective TSPO ligands and a class of CA activators, both developed by us in recent years, a small library of 2-phenylindole-based dual TSPO/CA modulators was developed, able to bind TSPO and activate CA VII in the low micromolar/submicromolar range. The interaction with the two targets was corroborated by computational studies. Biological investigation on human microglia C20 cells identified derivative <b>3</b> as a promising lead compound worthy of future optimization due to its (i) lack of cytotoxicity, (ii) ability to stimulate TSPO steroidogenic function and activate CA VII, and (iii) ability to effectively upregulate gene expression of the brain-derived neurotrophic factor.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discovery of the First-in-Class Dual TSPO/Carbonic Anhydrase Modulators with Promising Neurotrophic Activity.\",\"authors\":\"Valeria Poggetti, Elisa Angeloni, Lorenzo Germelli, Benito Natale, Muhammad Waqas, Giuliana Sarno, Andrea Angeli, Simona Daniele, Silvia Salerno, Elisabetta Barresi, Sandro Cosconati, Sabrina Castellano, Eleonora Da Pozzo, Barbara Costa, Claudiu T Supuran, Federico Da Settimo, Sabrina Taliani\",\"doi\":\"10.1021/acschemneuro.4c00477\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In searching for putative new therapeutic strategies to treat neurodegenerative diseases, the mitochondrial 18 kDa translocator protein (TSPO) and cerebral isoforms of carbonic anhydrase (CA) were exploited as potential targets. Based on the structures of a class of highly affine and selective TSPO ligands and a class of CA activators, both developed by us in recent years, a small library of 2-phenylindole-based dual TSPO/CA modulators was developed, able to bind TSPO and activate CA VII in the low micromolar/submicromolar range. The interaction with the two targets was corroborated by computational studies. Biological investigation on human microglia C20 cells identified derivative <b>3</b> as a promising lead compound worthy of future optimization due to its (i) lack of cytotoxicity, (ii) ability to stimulate TSPO steroidogenic function and activate CA VII, and (iii) ability to effectively upregulate gene expression of the brain-derived neurotrophic factor.</p>\",\"PeriodicalId\":13,\"journal\":{\"name\":\"ACS Chemical Neuroscience\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Chemical Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1021/acschemneuro.4c00477\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acschemneuro.4c00477","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
在寻找治疗神经退行性疾病的潜在新疗法时,线粒体 18 kDa 转运蛋白(TSPO)和脑碳酸酐酶(CA)同工酶被视为潜在靶点。根据我们近年来开发的一类高亲和性和选择性 TSPO 配体和一类 CA 激活剂的结构,我们开发了一个小型的 2-苯基吲哚基 TSPO/CA 双调制剂库,它能够在低微摩尔/亚微摩尔范围内结合 TSPO 并激活 CA VII。计算研究证实了与这两个靶点的相互作用。通过对人类小胶质细胞 C20 进行生物学研究,发现衍生物 3 是一种很有前景的先导化合物,值得在未来进行优化,因为它(i)没有细胞毒性,(ii)能够刺激 TSPO 的类固醇生成功能并激活 CA VII,(iii)能够有效上调脑源性神经营养因子的基因表达。
Discovery of the First-in-Class Dual TSPO/Carbonic Anhydrase Modulators with Promising Neurotrophic Activity.
In searching for putative new therapeutic strategies to treat neurodegenerative diseases, the mitochondrial 18 kDa translocator protein (TSPO) and cerebral isoforms of carbonic anhydrase (CA) were exploited as potential targets. Based on the structures of a class of highly affine and selective TSPO ligands and a class of CA activators, both developed by us in recent years, a small library of 2-phenylindole-based dual TSPO/CA modulators was developed, able to bind TSPO and activate CA VII in the low micromolar/submicromolar range. The interaction with the two targets was corroborated by computational studies. Biological investigation on human microglia C20 cells identified derivative 3 as a promising lead compound worthy of future optimization due to its (i) lack of cytotoxicity, (ii) ability to stimulate TSPO steroidogenic function and activate CA VII, and (iii) ability to effectively upregulate gene expression of the brain-derived neurotrophic factor.
期刊介绍:
ACS Chemical Neuroscience publishes high-quality research articles and reviews that showcase chemical, quantitative biological, biophysical and bioengineering approaches to the understanding of the nervous system and to the development of new treatments for neurological disorders. Research in the journal focuses on aspects of chemical neurobiology and bio-neurochemistry such as the following:
Neurotransmitters and receptors
Neuropharmaceuticals and therapeutics
Neural development—Plasticity, and degeneration
Chemical, physical, and computational methods in neuroscience
Neuronal diseases—basis, detection, and treatment
Mechanism of aging, learning, memory and behavior
Pain and sensory processing
Neurotoxins
Neuroscience-inspired bioengineering
Development of methods in chemical neurobiology
Neuroimaging agents and technologies
Animal models for central nervous system diseases
Behavioral research