Ge Bai, Dominik Šafránek, Joseph Schindler, Francesco Buscemi, Valerio Scarani
{"title":"具有一般量子先验的观测熵","authors":"Ge Bai, Dominik Šafránek, Joseph Schindler, Francesco Buscemi, Valerio Scarani","doi":"10.22331/q-2024-11-14-1524","DOIUrl":null,"url":null,"abstract":"Observational entropy captures both the intrinsic uncertainty of a thermodynamic state and the lack of knowledge due to coarse-graining. We demonstrate two interpretations of observational entropy, one as the statistical deficiency resulting from a measurement, the other as the difficulty of inferring the input state from the measurement statistics by quantum Bayesian retrodiction. These interpretations show that the observational entropy implicitly includes a uniform reference prior. Since the uniform prior cannot be used when the system is infinite-dimensional or otherwise energy-constrained, we propose generalizations by replacing the uniform prior with arbitrary quantum states that may not even commute with the state of the system. We propose three candidates for this generalization, discuss their properties, and show that one of them gives a unified expression that relates both interpretations.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Observational entropy with general quantum priors\",\"authors\":\"Ge Bai, Dominik Šafránek, Joseph Schindler, Francesco Buscemi, Valerio Scarani\",\"doi\":\"10.22331/q-2024-11-14-1524\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Observational entropy captures both the intrinsic uncertainty of a thermodynamic state and the lack of knowledge due to coarse-graining. We demonstrate two interpretations of observational entropy, one as the statistical deficiency resulting from a measurement, the other as the difficulty of inferring the input state from the measurement statistics by quantum Bayesian retrodiction. These interpretations show that the observational entropy implicitly includes a uniform reference prior. Since the uniform prior cannot be used when the system is infinite-dimensional or otherwise energy-constrained, we propose generalizations by replacing the uniform prior with arbitrary quantum states that may not even commute with the state of the system. We propose three candidates for this generalization, discuss their properties, and show that one of them gives a unified expression that relates both interpretations.\",\"PeriodicalId\":20807,\"journal\":{\"name\":\"Quantum\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.22331/q-2024-11-14-1524\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2024-11-14-1524","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Observational entropy captures both the intrinsic uncertainty of a thermodynamic state and the lack of knowledge due to coarse-graining. We demonstrate two interpretations of observational entropy, one as the statistical deficiency resulting from a measurement, the other as the difficulty of inferring the input state from the measurement statistics by quantum Bayesian retrodiction. These interpretations show that the observational entropy implicitly includes a uniform reference prior. Since the uniform prior cannot be used when the system is infinite-dimensional or otherwise energy-constrained, we propose generalizations by replacing the uniform prior with arbitrary quantum states that may not even commute with the state of the system. We propose three candidates for this generalization, discuss their properties, and show that one of them gives a unified expression that relates both interpretations.
QuantumPhysics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍:
Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.