开发分层遮挡感知模型:绘制中国 31 个城市的社区开放空间图

IF 11.1 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES
Yichen Lei , Xiuyuan Zhang , Shuping Xiong , Ge Tan , Shihong Du
{"title":"开发分层遮挡感知模型:绘制中国 31 个城市的社区开放空间图","authors":"Yichen Lei ,&nbsp;Xiuyuan Zhang ,&nbsp;Shuping Xiong ,&nbsp;Ge Tan ,&nbsp;Shihong Du","doi":"10.1016/j.rse.2024.114498","DOIUrl":null,"url":null,"abstract":"<div><div>Community Open Spaces (COS) refer to the fine-grained and micro-open areas within communities that offer residents convenient opportunities for social interaction and health benefits. The mapping of COS using Very High Resolution (VHR) imagery can provide critical community-scale data for monitoring urban sustainable development goals (SDGs). However, the three-dimensional structure of COS often results in layered occlusion in two-dimensional satellite imagery, leading to the invisibility and fragmentation of ground COS features in VHR images. This study presents a novel Layered Occlusion Perception Model (LOPM) to address these challenges by accurately modeling and reconstructing the intricate layered structure of COS. Our approach involves the automatic generation of a comprehensive COS database and the joint training of a deep learning network to decompose occlusion relationships. The developed dual-layer map product, COS-1m, includes various elements and their coupled spaces, with a resolution of 1 m, covering 31 major cities in China. The results demonstrate that the proposed method achieved an overall accuracy of 86.39% and an average F1-score of 77.47% across these cities. COS-1m reveals that, on average, 60.51 km<sup>2</sup> of COS area per city is occluded, constituting 10.18% of the total COS area. This research advances the technology for layered monitoring of COS, fills a critical gap in community-scale SDG assessments by providing fine-grained COS data products, and offers valuable insights for urban planners and policymakers to promote more effective and sustainable urban development.</div></div>","PeriodicalId":417,"journal":{"name":"Remote Sensing of Environment","volume":"316 ","pages":"Article 114498"},"PeriodicalIF":11.1000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Developing Layered Occlusion Perception Model: Mapping community open spaces in 31 China cities\",\"authors\":\"Yichen Lei ,&nbsp;Xiuyuan Zhang ,&nbsp;Shuping Xiong ,&nbsp;Ge Tan ,&nbsp;Shihong Du\",\"doi\":\"10.1016/j.rse.2024.114498\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Community Open Spaces (COS) refer to the fine-grained and micro-open areas within communities that offer residents convenient opportunities for social interaction and health benefits. The mapping of COS using Very High Resolution (VHR) imagery can provide critical community-scale data for monitoring urban sustainable development goals (SDGs). However, the three-dimensional structure of COS often results in layered occlusion in two-dimensional satellite imagery, leading to the invisibility and fragmentation of ground COS features in VHR images. This study presents a novel Layered Occlusion Perception Model (LOPM) to address these challenges by accurately modeling and reconstructing the intricate layered structure of COS. Our approach involves the automatic generation of a comprehensive COS database and the joint training of a deep learning network to decompose occlusion relationships. The developed dual-layer map product, COS-1m, includes various elements and their coupled spaces, with a resolution of 1 m, covering 31 major cities in China. The results demonstrate that the proposed method achieved an overall accuracy of 86.39% and an average F1-score of 77.47% across these cities. COS-1m reveals that, on average, 60.51 km<sup>2</sup> of COS area per city is occluded, constituting 10.18% of the total COS area. This research advances the technology for layered monitoring of COS, fills a critical gap in community-scale SDG assessments by providing fine-grained COS data products, and offers valuable insights for urban planners and policymakers to promote more effective and sustainable urban development.</div></div>\",\"PeriodicalId\":417,\"journal\":{\"name\":\"Remote Sensing of Environment\",\"volume\":\"316 \",\"pages\":\"Article 114498\"},\"PeriodicalIF\":11.1000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Remote Sensing of Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0034425724005248\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing of Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0034425724005248","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

社区开放空间 (COS) 指的是社区内的细粒度和微型开放区域,它们为居民提供了方便的社交互动机会和健康益处。利用甚高分辨率(VHR)图像绘制社区开放空间图可以为监测城市可持续发展目标(SDGs)提供重要的社区尺度数据。然而,COS 的三维结构往往会导致二维卫星图像中的分层遮挡,从而导致 VHR 图像中地面 COS 特征的不可见性和支离破碎。本研究提出了一种新颖的分层遮挡感知模型(LOPM),通过对 COS 复杂的分层结构进行精确建模和重建来应对这些挑战。我们的方法包括自动生成一个全面的 COS 数据库,并联合训练一个深度学习网络来分解遮挡关系。所开发的双层地图产品 COS-1m 包括各种要素及其耦合空间,分辨率为 1 米,覆盖中国 31 个主要城市。结果表明,所提出的方法在这些城市的总体准确率达到了 86.39%,平均 F1 分数为 77.47%。COS-1m 显示,平均每个城市有 60.51 平方公里的 COS 区域被遮挡,占 COS 总面积的 10.18%。这项研究推动了 COS 分层监测技术的发展,通过提供精细的 COS 数据产品,填补了社区尺度可持续发展目标评估的关键空白,并为城市规划者和决策者提供了宝贵的见解,以促进更有效和可持续的城市发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Developing Layered Occlusion Perception Model: Mapping community open spaces in 31 China cities
Community Open Spaces (COS) refer to the fine-grained and micro-open areas within communities that offer residents convenient opportunities for social interaction and health benefits. The mapping of COS using Very High Resolution (VHR) imagery can provide critical community-scale data for monitoring urban sustainable development goals (SDGs). However, the three-dimensional structure of COS often results in layered occlusion in two-dimensional satellite imagery, leading to the invisibility and fragmentation of ground COS features in VHR images. This study presents a novel Layered Occlusion Perception Model (LOPM) to address these challenges by accurately modeling and reconstructing the intricate layered structure of COS. Our approach involves the automatic generation of a comprehensive COS database and the joint training of a deep learning network to decompose occlusion relationships. The developed dual-layer map product, COS-1m, includes various elements and their coupled spaces, with a resolution of 1 m, covering 31 major cities in China. The results demonstrate that the proposed method achieved an overall accuracy of 86.39% and an average F1-score of 77.47% across these cities. COS-1m reveals that, on average, 60.51 km2 of COS area per city is occluded, constituting 10.18% of the total COS area. This research advances the technology for layered monitoring of COS, fills a critical gap in community-scale SDG assessments by providing fine-grained COS data products, and offers valuable insights for urban planners and policymakers to promote more effective and sustainable urban development.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Remote Sensing of Environment
Remote Sensing of Environment 环境科学-成像科学与照相技术
CiteScore
25.10
自引率
8.90%
发文量
455
审稿时长
53 days
期刊介绍: Remote Sensing of Environment (RSE) serves the Earth observation community by disseminating results on the theory, science, applications, and technology that contribute to advancing the field of remote sensing. With a thoroughly interdisciplinary approach, RSE encompasses terrestrial, oceanic, and atmospheric sensing. The journal emphasizes biophysical and quantitative approaches to remote sensing at local to global scales, covering a diverse range of applications and techniques. RSE serves as a vital platform for the exchange of knowledge and advancements in the dynamic field of remote sensing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信