Isaac Bermúdez , Jessika Camaño , Ricardo Oyarzúa , Manuel Solano
{"title":"用于反渗透过程建模的纳维-斯托克斯/传输耦合系统的符合混合有限元法","authors":"Isaac Bermúdez , Jessika Camaño , Ricardo Oyarzúa , Manuel Solano","doi":"10.1016/j.cma.2024.117527","DOIUrl":null,"url":null,"abstract":"<div><div>We consider the coupled Navier–Stokes/transport equations with nonlinear transmission conditions, which constitute one of the most common models utilized to simulate a reverse osmosis effect in water desalination processes when considering feed and permeate channels coupled through a semi-permeate membrane. The variational formulation consists of a set of equations where the velocities, the concentrations, along with tensors and vector fields introduced as auxiliary unknowns and two Lagrange multipliers are the main unknowns of the system. The latter are introduced to deal with the trace of functions that do not have enough regularity to be restricted to the boundary. In addition, the pressures can be recovered afterwards by a postprocessing formula. As a consequence, we obtain a nonlinear Banach spaces-based mixed formulation, which has a perturbed saddle point structure. We analyze the continuous and discrete solvability of this problem by linearizing the perturbation and applying the classical Banach fixed point theorem along with the Banach–Nečas–Babuška result. Regarding the discrete scheme, feasible choices of finite element subspaces that can be used include Raviart–Thomas spaces for the auxiliary tensor and vector unknowns, piecewise polynomials for the velocities and the concentrations, and continuous polynomial space of lowest order for the traces, yielding stable discrete schemes. An optimal <em>a priori</em> error estimate is derived, and numerical results illustrating both, the performance of the scheme confirming the theoretical rates of convergence, and its applicability, are reported.</div></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":"433 ","pages":"Article 117527"},"PeriodicalIF":6.9000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A conforming mixed finite element method for a coupled Navier–Stokes/transport system modeling reverse osmosis processes\",\"authors\":\"Isaac Bermúdez , Jessika Camaño , Ricardo Oyarzúa , Manuel Solano\",\"doi\":\"10.1016/j.cma.2024.117527\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We consider the coupled Navier–Stokes/transport equations with nonlinear transmission conditions, which constitute one of the most common models utilized to simulate a reverse osmosis effect in water desalination processes when considering feed and permeate channels coupled through a semi-permeate membrane. The variational formulation consists of a set of equations where the velocities, the concentrations, along with tensors and vector fields introduced as auxiliary unknowns and two Lagrange multipliers are the main unknowns of the system. The latter are introduced to deal with the trace of functions that do not have enough regularity to be restricted to the boundary. In addition, the pressures can be recovered afterwards by a postprocessing formula. As a consequence, we obtain a nonlinear Banach spaces-based mixed formulation, which has a perturbed saddle point structure. We analyze the continuous and discrete solvability of this problem by linearizing the perturbation and applying the classical Banach fixed point theorem along with the Banach–Nečas–Babuška result. Regarding the discrete scheme, feasible choices of finite element subspaces that can be used include Raviart–Thomas spaces for the auxiliary tensor and vector unknowns, piecewise polynomials for the velocities and the concentrations, and continuous polynomial space of lowest order for the traces, yielding stable discrete schemes. An optimal <em>a priori</em> error estimate is derived, and numerical results illustrating both, the performance of the scheme confirming the theoretical rates of convergence, and its applicability, are reported.</div></div>\",\"PeriodicalId\":55222,\"journal\":{\"name\":\"Computer Methods in Applied Mechanics and Engineering\",\"volume\":\"433 \",\"pages\":\"Article 117527\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Applied Mechanics and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045782524007813\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045782524007813","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
A conforming mixed finite element method for a coupled Navier–Stokes/transport system modeling reverse osmosis processes
We consider the coupled Navier–Stokes/transport equations with nonlinear transmission conditions, which constitute one of the most common models utilized to simulate a reverse osmosis effect in water desalination processes when considering feed and permeate channels coupled through a semi-permeate membrane. The variational formulation consists of a set of equations where the velocities, the concentrations, along with tensors and vector fields introduced as auxiliary unknowns and two Lagrange multipliers are the main unknowns of the system. The latter are introduced to deal with the trace of functions that do not have enough regularity to be restricted to the boundary. In addition, the pressures can be recovered afterwards by a postprocessing formula. As a consequence, we obtain a nonlinear Banach spaces-based mixed formulation, which has a perturbed saddle point structure. We analyze the continuous and discrete solvability of this problem by linearizing the perturbation and applying the classical Banach fixed point theorem along with the Banach–Nečas–Babuška result. Regarding the discrete scheme, feasible choices of finite element subspaces that can be used include Raviart–Thomas spaces for the auxiliary tensor and vector unknowns, piecewise polynomials for the velocities and the concentrations, and continuous polynomial space of lowest order for the traces, yielding stable discrete schemes. An optimal a priori error estimate is derived, and numerical results illustrating both, the performance of the scheme confirming the theoretical rates of convergence, and its applicability, are reported.
期刊介绍:
Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.