通过基于完整冷却回路的 CFD 模拟和实验研究自然冷却变压器绕组入口处的液体温度和速度

IF 3.8 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
S. C. Zhao;X. Zhang;Q. Liu;Z. D. Wang;M. Negro;M. Daghrah;E. Van Schaik
{"title":"通过基于完整冷却回路的 CFD 模拟和实验研究自然冷却变压器绕组入口处的液体温度和速度","authors":"S. C. Zhao;X. Zhang;Q. Liu;Z. D. Wang;M. Negro;M. Daghrah;E. Van Schaik","doi":"10.1109/TPWRD.2024.3495229","DOIUrl":null,"url":null,"abstract":"The liquid temperatures and velocities are of great importance for estimating the hot-spot temperature (HST) within the transformer windings. For liquid natural cooled power transformers (ON/KN), the liquid temperatures and velocities can only be obtained by modelling the complete-cooling-loop (CCL), which refers to the insulating liquid circulation between the windings and the radiators. In this paper, a CCL based computational fluid dynamics (CFD) model was developed for determining the liquid temperatures and velocities in the natural cooling mode. The validities of the CCL CFD simulations were verified by conducting experiments under different loading conditions, at different thermal heads and of different insulating liquids. The experimentally verified simulation results showed that the top liquid temperature increases exponentially against the power loss, whereas the bottom liquid temperature increases linearly against the power loss. The liquid velocity is in an approximately linear relationship against the square root of the product of the power loss and the thermal head. Moreover, the thermal performances of different insulating liquids were investigated. The dominating material property for the liquid thermal performance of an ON/KN transformer is the dynamic viscosity. For different liquids, the closer the dynamic viscosity, the better matching of the liquid temperatures and velocities.","PeriodicalId":13498,"journal":{"name":"IEEE Transactions on Power Delivery","volume":"40 1","pages":"343-352"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10752914","citationCount":"0","resultStr":"{\"title\":\"Investigation of Liquid Temperatures and Velocities at Winding Inlet in Natural Cooled Transformers Through Complete-Cooling-Loop Based CFD Simulations and Experiments\",\"authors\":\"S. C. Zhao;X. Zhang;Q. Liu;Z. D. Wang;M. Negro;M. Daghrah;E. Van Schaik\",\"doi\":\"10.1109/TPWRD.2024.3495229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The liquid temperatures and velocities are of great importance for estimating the hot-spot temperature (HST) within the transformer windings. For liquid natural cooled power transformers (ON/KN), the liquid temperatures and velocities can only be obtained by modelling the complete-cooling-loop (CCL), which refers to the insulating liquid circulation between the windings and the radiators. In this paper, a CCL based computational fluid dynamics (CFD) model was developed for determining the liquid temperatures and velocities in the natural cooling mode. The validities of the CCL CFD simulations were verified by conducting experiments under different loading conditions, at different thermal heads and of different insulating liquids. The experimentally verified simulation results showed that the top liquid temperature increases exponentially against the power loss, whereas the bottom liquid temperature increases linearly against the power loss. The liquid velocity is in an approximately linear relationship against the square root of the product of the power loss and the thermal head. Moreover, the thermal performances of different insulating liquids were investigated. The dominating material property for the liquid thermal performance of an ON/KN transformer is the dynamic viscosity. For different liquids, the closer the dynamic viscosity, the better matching of the liquid temperatures and velocities.\",\"PeriodicalId\":13498,\"journal\":{\"name\":\"IEEE Transactions on Power Delivery\",\"volume\":\"40 1\",\"pages\":\"343-352\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10752914\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Power Delivery\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10752914/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Power Delivery","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10752914/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigation of Liquid Temperatures and Velocities at Winding Inlet in Natural Cooled Transformers Through Complete-Cooling-Loop Based CFD Simulations and Experiments
The liquid temperatures and velocities are of great importance for estimating the hot-spot temperature (HST) within the transformer windings. For liquid natural cooled power transformers (ON/KN), the liquid temperatures and velocities can only be obtained by modelling the complete-cooling-loop (CCL), which refers to the insulating liquid circulation between the windings and the radiators. In this paper, a CCL based computational fluid dynamics (CFD) model was developed for determining the liquid temperatures and velocities in the natural cooling mode. The validities of the CCL CFD simulations were verified by conducting experiments under different loading conditions, at different thermal heads and of different insulating liquids. The experimentally verified simulation results showed that the top liquid temperature increases exponentially against the power loss, whereas the bottom liquid temperature increases linearly against the power loss. The liquid velocity is in an approximately linear relationship against the square root of the product of the power loss and the thermal head. Moreover, the thermal performances of different insulating liquids were investigated. The dominating material property for the liquid thermal performance of an ON/KN transformer is the dynamic viscosity. For different liquids, the closer the dynamic viscosity, the better matching of the liquid temperatures and velocities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Power Delivery
IEEE Transactions on Power Delivery 工程技术-工程:电子与电气
CiteScore
9.00
自引率
13.60%
发文量
513
审稿时长
6 months
期刊介绍: The scope of the Society embraces planning, research, development, design, application, construction, installation and operation of apparatus, equipment, structures, materials and systems for the safe, reliable and economic generation, transmission, distribution, conversion, measurement and control of electric energy. It includes the developing of engineering standards, the providing of information and instruction to the public and to legislators, as well as technical scientific, literary, educational and other activities that contribute to the electric power discipline or utilize the techniques or products within this discipline.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信