Yige Liu;Che Wang;Yiwei Lou;Yongzhi Cao;Hanpin Wang
{"title":"攻击者不尽相同!揭示特征分布对标签推理攻击的影响","authors":"Yige Liu;Che Wang;Yiwei Lou;Yongzhi Cao;Hanpin Wang","doi":"10.1109/TIFS.2024.3498464","DOIUrl":null,"url":null,"abstract":"As a distributed machine learning paradigm, vertical federated learning enables multiple passive parties with distinct features and an active party with labels to train a model collaboratively. Although it has been widely applied for its ability to protect privacy to some extent, this paradigm still faces various threats, especially the label inference attack (LIA). In this paper, we present the first observation of the disparity in LIAs resulting from differences in feature distribution among passive parties. To substantiate this, we study four different types of LIAs across five benchmark datasets, investigating the potential influencing factors and their combined impact. The results show that attack performance disparities can vary up to 15 times among different passive parties. So, how to eliminate this disparity? We explore methods from both attack and defense perspectives, including learning rate adjustment and noise perturbation with differential privacy. Our findings indicate that a modest increase in the learning rate of the passive party effectively enhances the LIA performance. In light of these, we propose a novel defense strategy that identifies passive parties with important features and applies adaptive noise to their gradients. Experiments show that it effectively reduces both attack disparity among passive parties and overall attack accuracy, while maintaining low computational complexity and avoiding additional communication overhead. Our code is publicly accessible at \n<uri>https://github.com/WWlnZSBMaXU/Attackers-Are-Not-the-Same</uri>\n.","PeriodicalId":13492,"journal":{"name":"IEEE Transactions on Information Forensics and Security","volume":"20 ","pages":"71-86"},"PeriodicalIF":6.3000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Attackers Are Not the Same! Unveiling the Impact of Feature Distribution on Label Inference Attacks\",\"authors\":\"Yige Liu;Che Wang;Yiwei Lou;Yongzhi Cao;Hanpin Wang\",\"doi\":\"10.1109/TIFS.2024.3498464\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As a distributed machine learning paradigm, vertical federated learning enables multiple passive parties with distinct features and an active party with labels to train a model collaboratively. Although it has been widely applied for its ability to protect privacy to some extent, this paradigm still faces various threats, especially the label inference attack (LIA). In this paper, we present the first observation of the disparity in LIAs resulting from differences in feature distribution among passive parties. To substantiate this, we study four different types of LIAs across five benchmark datasets, investigating the potential influencing factors and their combined impact. The results show that attack performance disparities can vary up to 15 times among different passive parties. So, how to eliminate this disparity? We explore methods from both attack and defense perspectives, including learning rate adjustment and noise perturbation with differential privacy. Our findings indicate that a modest increase in the learning rate of the passive party effectively enhances the LIA performance. In light of these, we propose a novel defense strategy that identifies passive parties with important features and applies adaptive noise to their gradients. Experiments show that it effectively reduces both attack disparity among passive parties and overall attack accuracy, while maintaining low computational complexity and avoiding additional communication overhead. Our code is publicly accessible at \\n<uri>https://github.com/WWlnZSBMaXU/Attackers-Are-Not-the-Same</uri>\\n.\",\"PeriodicalId\":13492,\"journal\":{\"name\":\"IEEE Transactions on Information Forensics and Security\",\"volume\":\"20 \",\"pages\":\"71-86\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Information Forensics and Security\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10752967/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Forensics and Security","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10752967/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Attackers Are Not the Same! Unveiling the Impact of Feature Distribution on Label Inference Attacks
As a distributed machine learning paradigm, vertical federated learning enables multiple passive parties with distinct features and an active party with labels to train a model collaboratively. Although it has been widely applied for its ability to protect privacy to some extent, this paradigm still faces various threats, especially the label inference attack (LIA). In this paper, we present the first observation of the disparity in LIAs resulting from differences in feature distribution among passive parties. To substantiate this, we study four different types of LIAs across five benchmark datasets, investigating the potential influencing factors and their combined impact. The results show that attack performance disparities can vary up to 15 times among different passive parties. So, how to eliminate this disparity? We explore methods from both attack and defense perspectives, including learning rate adjustment and noise perturbation with differential privacy. Our findings indicate that a modest increase in the learning rate of the passive party effectively enhances the LIA performance. In light of these, we propose a novel defense strategy that identifies passive parties with important features and applies adaptive noise to their gradients. Experiments show that it effectively reduces both attack disparity among passive parties and overall attack accuracy, while maintaining low computational complexity and avoiding additional communication overhead. Our code is publicly accessible at
https://github.com/WWlnZSBMaXU/Attackers-Are-Not-the-Same
.
期刊介绍:
The IEEE Transactions on Information Forensics and Security covers the sciences, technologies, and applications relating to information forensics, information security, biometrics, surveillance and systems applications that incorporate these features