{"title":"Pythia中的强子-离子碰撞和光子生成的矢量-介子优势模型","authors":"Ilkka Helenius, Marius Utheim","doi":"10.1140/epjc/s10052-024-13543-6","DOIUrl":null,"url":null,"abstract":"<div><p>We present an extension to the <span>Pythia</span> Monte Carlo event generator that enables simulations of collisions between a generic hadron beam on a nuclear target with energy variation in event-by-event basis. This builds upon <span>Pythia</span> ’s module for heavy ions, <span>Angantyr</span>, as well as previous work on simulating hadron-proton collisions. As such, the extensions in this work are largely technical, except for a rudimentary model for hadronic fluctuations. With hadron-ion simulations, we implement an explicit vector-meson dominance (VMD) model that can be used to simulate interactions of hadronic component of real photons in photo-nuclear collisions. Such processes can be studied in ultra-peripheral heavy-ion collisions and in the future also with the upcoming Electron-Ion Collider. Our work also has applications to hadronic showers, e.g. air showers initiated by high-energy cosmic rays. We first validate the VMD model by comparing to HERA photoproduction data on proton target. Then we apply this to generate events for ultra-peripheral heavy-ion collisions at the LHC and present the results corresponding to the event-selection criteria matching to a recent ATLAS analysis. We find that single-particle multiplicity and rapidity distributions are well in line with the measured ones. We also construct the Fourier coefficients from two-particle correlations for the simulated events and study whether the resulting azimuthal anisotropies are consistent with the ATLAS results.</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"84 11","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-024-13543-6.pdf","citationCount":"0","resultStr":"{\"title\":\"Hadron-ion collisions in Pythia and the vector-meson dominance model for photoproduction\",\"authors\":\"Ilkka Helenius, Marius Utheim\",\"doi\":\"10.1140/epjc/s10052-024-13543-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We present an extension to the <span>Pythia</span> Monte Carlo event generator that enables simulations of collisions between a generic hadron beam on a nuclear target with energy variation in event-by-event basis. This builds upon <span>Pythia</span> ’s module for heavy ions, <span>Angantyr</span>, as well as previous work on simulating hadron-proton collisions. As such, the extensions in this work are largely technical, except for a rudimentary model for hadronic fluctuations. With hadron-ion simulations, we implement an explicit vector-meson dominance (VMD) model that can be used to simulate interactions of hadronic component of real photons in photo-nuclear collisions. Such processes can be studied in ultra-peripheral heavy-ion collisions and in the future also with the upcoming Electron-Ion Collider. Our work also has applications to hadronic showers, e.g. air showers initiated by high-energy cosmic rays. We first validate the VMD model by comparing to HERA photoproduction data on proton target. Then we apply this to generate events for ultra-peripheral heavy-ion collisions at the LHC and present the results corresponding to the event-selection criteria matching to a recent ATLAS analysis. We find that single-particle multiplicity and rapidity distributions are well in line with the measured ones. We also construct the Fourier coefficients from two-particle correlations for the simulated events and study whether the resulting azimuthal anisotropies are consistent with the ATLAS results.</p></div>\",\"PeriodicalId\":788,\"journal\":{\"name\":\"The European Physical Journal C\",\"volume\":\"84 11\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1140/epjc/s10052-024-13543-6.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal C\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjc/s10052-024-13543-6\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, PARTICLES & FIELDS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal C","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjc/s10052-024-13543-6","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
Hadron-ion collisions in Pythia and the vector-meson dominance model for photoproduction
We present an extension to the Pythia Monte Carlo event generator that enables simulations of collisions between a generic hadron beam on a nuclear target with energy variation in event-by-event basis. This builds upon Pythia ’s module for heavy ions, Angantyr, as well as previous work on simulating hadron-proton collisions. As such, the extensions in this work are largely technical, except for a rudimentary model for hadronic fluctuations. With hadron-ion simulations, we implement an explicit vector-meson dominance (VMD) model that can be used to simulate interactions of hadronic component of real photons in photo-nuclear collisions. Such processes can be studied in ultra-peripheral heavy-ion collisions and in the future also with the upcoming Electron-Ion Collider. Our work also has applications to hadronic showers, e.g. air showers initiated by high-energy cosmic rays. We first validate the VMD model by comparing to HERA photoproduction data on proton target. Then we apply this to generate events for ultra-peripheral heavy-ion collisions at the LHC and present the results corresponding to the event-selection criteria matching to a recent ATLAS analysis. We find that single-particle multiplicity and rapidity distributions are well in line with the measured ones. We also construct the Fourier coefficients from two-particle correlations for the simulated events and study whether the resulting azimuthal anisotropies are consistent with the ATLAS results.
期刊介绍:
Experimental Physics I: Accelerator Based High-Energy Physics
Hadron and lepton collider physics
Lepton-nucleon scattering
High-energy nuclear reactions
Standard model precision tests
Search for new physics beyond the standard model
Heavy flavour physics
Neutrino properties
Particle detector developments
Computational methods and analysis tools
Experimental Physics II: Astroparticle Physics
Dark matter searches
High-energy cosmic rays
Double beta decay
Long baseline neutrino experiments
Neutrino astronomy
Axions and other weakly interacting light particles
Gravitational waves and observational cosmology
Particle detector developments
Computational methods and analysis tools
Theoretical Physics I: Phenomenology of the Standard Model and Beyond
Electroweak interactions
Quantum chromo dynamics
Heavy quark physics and quark flavour mixing
Neutrino physics
Phenomenology of astro- and cosmoparticle physics
Meson spectroscopy and non-perturbative QCD
Low-energy effective field theories
Lattice field theory
High temperature QCD and heavy ion physics
Phenomenology of supersymmetric extensions of the SM
Phenomenology of non-supersymmetric extensions of the SM
Model building and alternative models of electroweak symmetry breaking
Flavour physics beyond the SM
Computational algorithms and tools...etc.