克尔-纽曼黑洞合并产生的短时伽马射线暴

IF 4.2 2区 物理与天体物理 Q2 PHYSICS, PARTICLES & FIELDS
Shad Ali
{"title":"克尔-纽曼黑洞合并产生的短时伽马射线暴","authors":"Shad Ali","doi":"10.1140/epjc/s10052-024-13495-x","DOIUrl":null,"url":null,"abstract":"<div><p>Black hole (BH) mergers are natural sources of gravitational waves (GWs) and are possibly associated with electromagnetic events. Such events from a charged rotating BH with an accretion on to it could be more energetic and ultra-short-lived if the magnetic force dominates the accretion process because the attraction of ionized fluid with a strong magnetic field around the rotating BH further amplifies the acceleration of the charged particle via a gyromagnetic effect. Thus a stronger magnetic field and gravitational pull will provide an inward force to any fluid displaced in the radial direction and move it toward the axis of rotation with an increasing velocity. After many twists during rotation and the existence of restoring agents, Such events could produce a narrow intense jet starts in the form of Poynting flux along the axis of rotation resembling the Blandford–Znajek (BZ) mechanism. We investigated a charged rotating BH and obtained characteristic results (e.g., the remnant mass, magnetic field strength, luminosity, opening angle, viewing angle, and variation of viewing angle on the SGRB luminosity detection) that have a nice coincidence with rare events having GW associated with EM counterparts. This study gives a new insight into events with a strongly magnetized disk dominating the accretion process of energy extraction.</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"84 11","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-024-13495-x.pdf","citationCount":"0","resultStr":"{\"title\":\"Short-duration gamma-ray bursts from Kerr–Newman black hole mergers\",\"authors\":\"Shad Ali\",\"doi\":\"10.1140/epjc/s10052-024-13495-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Black hole (BH) mergers are natural sources of gravitational waves (GWs) and are possibly associated with electromagnetic events. Such events from a charged rotating BH with an accretion on to it could be more energetic and ultra-short-lived if the magnetic force dominates the accretion process because the attraction of ionized fluid with a strong magnetic field around the rotating BH further amplifies the acceleration of the charged particle via a gyromagnetic effect. Thus a stronger magnetic field and gravitational pull will provide an inward force to any fluid displaced in the radial direction and move it toward the axis of rotation with an increasing velocity. After many twists during rotation and the existence of restoring agents, Such events could produce a narrow intense jet starts in the form of Poynting flux along the axis of rotation resembling the Blandford–Znajek (BZ) mechanism. We investigated a charged rotating BH and obtained characteristic results (e.g., the remnant mass, magnetic field strength, luminosity, opening angle, viewing angle, and variation of viewing angle on the SGRB luminosity detection) that have a nice coincidence with rare events having GW associated with EM counterparts. This study gives a new insight into events with a strongly magnetized disk dominating the accretion process of energy extraction.</p></div>\",\"PeriodicalId\":788,\"journal\":{\"name\":\"The European Physical Journal C\",\"volume\":\"84 11\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1140/epjc/s10052-024-13495-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal C\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjc/s10052-024-13495-x\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, PARTICLES & FIELDS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal C","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjc/s10052-024-13495-x","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0

摘要

黑洞(BH)合并是引力波(GW)的天然来源,也可能与电磁事件有关。如果磁力在吸积过程中占主导地位,那么这种由带电旋转黑洞吸积而来的事件可能能量更大、寿命更长,因为旋转黑洞周围的强磁场会吸引电离流体,通过回旋磁效应进一步放大带电粒子的加速度。因此,更强的磁场和引力将为任何沿径向移动的流体提供向内的力,并以越来越大的速度将其推向旋转轴。在旋转过程中经过多次扭转并存在恢复因子的情况下,此类事件可能会沿着旋转轴以类似布兰福-兹纳杰克(BZ)机制的波因特通量形式产生狭长的强烈喷流。我们对一个带电旋转 BH 进行了研究,并获得了一些特征性结果(如残余质量、磁场强度、光度、开角、视角以及视角对 SGRB 光度探测的影响),这些结果与罕见的与电磁对应物相关的 GW 事件非常吻合。这项研究使人们对强磁化盘主导能量提取增殖过程的事件有了新的认识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Short-duration gamma-ray bursts from Kerr–Newman black hole mergers

Black hole (BH) mergers are natural sources of gravitational waves (GWs) and are possibly associated with electromagnetic events. Such events from a charged rotating BH with an accretion on to it could be more energetic and ultra-short-lived if the magnetic force dominates the accretion process because the attraction of ionized fluid with a strong magnetic field around the rotating BH further amplifies the acceleration of the charged particle via a gyromagnetic effect. Thus a stronger magnetic field and gravitational pull will provide an inward force to any fluid displaced in the radial direction and move it toward the axis of rotation with an increasing velocity. After many twists during rotation and the existence of restoring agents, Such events could produce a narrow intense jet starts in the form of Poynting flux along the axis of rotation resembling the Blandford–Znajek (BZ) mechanism. We investigated a charged rotating BH and obtained characteristic results (e.g., the remnant mass, magnetic field strength, luminosity, opening angle, viewing angle, and variation of viewing angle on the SGRB luminosity detection) that have a nice coincidence with rare events having GW associated with EM counterparts. This study gives a new insight into events with a strongly magnetized disk dominating the accretion process of energy extraction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The European Physical Journal C
The European Physical Journal C 物理-物理:粒子与场物理
CiteScore
8.10
自引率
15.90%
发文量
1008
审稿时长
2-4 weeks
期刊介绍: Experimental Physics I: Accelerator Based High-Energy Physics Hadron and lepton collider physics Lepton-nucleon scattering High-energy nuclear reactions Standard model precision tests Search for new physics beyond the standard model Heavy flavour physics Neutrino properties Particle detector developments Computational methods and analysis tools Experimental Physics II: Astroparticle Physics Dark matter searches High-energy cosmic rays Double beta decay Long baseline neutrino experiments Neutrino astronomy Axions and other weakly interacting light particles Gravitational waves and observational cosmology Particle detector developments Computational methods and analysis tools Theoretical Physics I: Phenomenology of the Standard Model and Beyond Electroweak interactions Quantum chromo dynamics Heavy quark physics and quark flavour mixing Neutrino physics Phenomenology of astro- and cosmoparticle physics Meson spectroscopy and non-perturbative QCD Low-energy effective field theories Lattice field theory High temperature QCD and heavy ion physics Phenomenology of supersymmetric extensions of the SM Phenomenology of non-supersymmetric extensions of the SM Model building and alternative models of electroweak symmetry breaking Flavour physics beyond the SM Computational algorithms and tools...etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信