邓克尔型西格尔-巴格曼变换的普朗切尔公式和反演公式

Q2 Mathematics
Fethi Soltani, Meriem Nenni
{"title":"邓克尔型西格尔-巴格曼变换的普朗切尔公式和反演公式","authors":"Fethi Soltani,&nbsp;Meriem Nenni","doi":"10.1007/s11565-024-00563-z","DOIUrl":null,"url":null,"abstract":"<div><p>In 1961, Bargmann introduced the classical Segal-Bargmann transform and in 1984, Cholewinsky introduced the generalized Segal-Bargmann transform. These two transforms are the aim of many works, and have many applications in mathematics. In this paper we introduce the Dunkl-type Segal-Bargmann transform <span>\\(\\mathscr {B}_{\\alpha }\\)</span> associated with the Coxeter group <span>\\(\\mathbb {Z}^d_2\\)</span>. Next, we investigate for this transform the main theorems of harmonic analysis (Plancherel and inversion formulas). Finally, we study some local uncertainty principles associated with the transform <span>\\(\\mathscr {B}_{\\alpha }\\)</span>.</p></div>","PeriodicalId":35009,"journal":{"name":"Annali dell''Universita di Ferrara","volume":"71 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Plancherel and inversion formulas for the Dunkl-type Segal-Bargmann transform\",\"authors\":\"Fethi Soltani,&nbsp;Meriem Nenni\",\"doi\":\"10.1007/s11565-024-00563-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In 1961, Bargmann introduced the classical Segal-Bargmann transform and in 1984, Cholewinsky introduced the generalized Segal-Bargmann transform. These two transforms are the aim of many works, and have many applications in mathematics. In this paper we introduce the Dunkl-type Segal-Bargmann transform <span>\\\\(\\\\mathscr {B}_{\\\\alpha }\\\\)</span> associated with the Coxeter group <span>\\\\(\\\\mathbb {Z}^d_2\\\\)</span>. Next, we investigate for this transform the main theorems of harmonic analysis (Plancherel and inversion formulas). Finally, we study some local uncertainty principles associated with the transform <span>\\\\(\\\\mathscr {B}_{\\\\alpha }\\\\)</span>.</p></div>\",\"PeriodicalId\":35009,\"journal\":{\"name\":\"Annali dell''Universita di Ferrara\",\"volume\":\"71 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annali dell''Universita di Ferrara\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11565-024-00563-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali dell''Universita di Ferrara","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s11565-024-00563-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

1961 年,Bargmann 提出了经典的 Segal-Bargmann 变换,1984 年,Cholewinsky 提出了广义的 Segal-Bargmann 变换。这两种变换是许多著作的目标,在数学中有着广泛的应用。在本文中,我们介绍了与考克斯特群 \(\mathbb {Z}^d_2\) 相关的邓克尔型西格尔-巴格曼变换(Dunkl-type Segal-Bargmann transform \(\mathscr {B}_{\alpha }\)。接下来,我们将针对这一变换研究谐波分析的主要定理(Plancherel 和反演公式)。最后,我们研究与变换 \(\mathscr {B}_{\alpha }\) 相关的一些局部不确定性原理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Plancherel and inversion formulas for the Dunkl-type Segal-Bargmann transform

In 1961, Bargmann introduced the classical Segal-Bargmann transform and in 1984, Cholewinsky introduced the generalized Segal-Bargmann transform. These two transforms are the aim of many works, and have many applications in mathematics. In this paper we introduce the Dunkl-type Segal-Bargmann transform \(\mathscr {B}_{\alpha }\) associated with the Coxeter group \(\mathbb {Z}^d_2\). Next, we investigate for this transform the main theorems of harmonic analysis (Plancherel and inversion formulas). Finally, we study some local uncertainty principles associated with the transform \(\mathscr {B}_{\alpha }\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annali dell''Universita di Ferrara
Annali dell''Universita di Ferrara Mathematics-Mathematics (all)
CiteScore
1.70
自引率
0.00%
发文量
71
期刊介绍: Annali dell''Università di Ferrara is a general mathematical journal publishing high quality papers in all aspects of pure and applied mathematics. After a quick preliminary examination, potentially acceptable contributions will be judged by appropriate international referees. Original research papers are preferred, but well-written surveys on important subjects are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信