Zhong Li;Sheng Liang;Jiayang Shi;Matthijs van Leeuwen
{"title":"跨域图层异常检测","authors":"Zhong Li;Sheng Liang;Jiayang Shi;Matthijs van Leeuwen","doi":"10.1109/TKDE.2024.3462442","DOIUrl":null,"url":null,"abstract":"Existing graph level anomaly detection methods are predominantly unsupervised due to high costs for obtaining labels, yielding sub-optimal detection accuracy when compared to supervised methods. Moreover, they heavily rely on the assumption that the training data exclusively consists of normal graphs. Hence, even the presence of a few anomalous graphs can lead to substantial performance degradation. To alleviate these problems, we propose a \n<italic>cross-domain graph level anomaly detection method</i>\n, aiming to identify anomalous graphs from a set of unlabeled graphs (\n<italic>target domain</i>\n) by using easily accessible normal graphs from a different but related domain (\n<italic>source domain</i>\n). Our method consists of four components: a feature extractor that preserves semantic and topological information of individual graphs while incorporating the distance between different graphs; an adversarial domain classifier to make graph level representations domain-invariant; a one-class classifier to exploit label information in the source domain; and a class aligner to align classes from both domains based on pseudolabels. Experiments on seven benchmark datasets show that the proposed method largely outperforms state-of-the-art methods.","PeriodicalId":13496,"journal":{"name":"IEEE Transactions on Knowledge and Data Engineering","volume":"36 12","pages":"7839-7850"},"PeriodicalIF":8.9000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10684507","citationCount":"0","resultStr":"{\"title\":\"Cross-Domain Graph Level Anomaly Detection\",\"authors\":\"Zhong Li;Sheng Liang;Jiayang Shi;Matthijs van Leeuwen\",\"doi\":\"10.1109/TKDE.2024.3462442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Existing graph level anomaly detection methods are predominantly unsupervised due to high costs for obtaining labels, yielding sub-optimal detection accuracy when compared to supervised methods. Moreover, they heavily rely on the assumption that the training data exclusively consists of normal graphs. Hence, even the presence of a few anomalous graphs can lead to substantial performance degradation. To alleviate these problems, we propose a \\n<italic>cross-domain graph level anomaly detection method</i>\\n, aiming to identify anomalous graphs from a set of unlabeled graphs (\\n<italic>target domain</i>\\n) by using easily accessible normal graphs from a different but related domain (\\n<italic>source domain</i>\\n). Our method consists of four components: a feature extractor that preserves semantic and topological information of individual graphs while incorporating the distance between different graphs; an adversarial domain classifier to make graph level representations domain-invariant; a one-class classifier to exploit label information in the source domain; and a class aligner to align classes from both domains based on pseudolabels. Experiments on seven benchmark datasets show that the proposed method largely outperforms state-of-the-art methods.\",\"PeriodicalId\":13496,\"journal\":{\"name\":\"IEEE Transactions on Knowledge and Data Engineering\",\"volume\":\"36 12\",\"pages\":\"7839-7850\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10684507\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Knowledge and Data Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10684507/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Knowledge and Data Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10684507/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Existing graph level anomaly detection methods are predominantly unsupervised due to high costs for obtaining labels, yielding sub-optimal detection accuracy when compared to supervised methods. Moreover, they heavily rely on the assumption that the training data exclusively consists of normal graphs. Hence, even the presence of a few anomalous graphs can lead to substantial performance degradation. To alleviate these problems, we propose a
cross-domain graph level anomaly detection method
, aiming to identify anomalous graphs from a set of unlabeled graphs (
target domain
) by using easily accessible normal graphs from a different but related domain (
source domain
). Our method consists of four components: a feature extractor that preserves semantic and topological information of individual graphs while incorporating the distance between different graphs; an adversarial domain classifier to make graph level representations domain-invariant; a one-class classifier to exploit label information in the source domain; and a class aligner to align classes from both domains based on pseudolabels. Experiments on seven benchmark datasets show that the proposed method largely outperforms state-of-the-art methods.
期刊介绍:
The IEEE Transactions on Knowledge and Data Engineering encompasses knowledge and data engineering aspects within computer science, artificial intelligence, electrical engineering, computer engineering, and related fields. It provides an interdisciplinary platform for disseminating new developments in knowledge and data engineering and explores the practicality of these concepts in both hardware and software. Specific areas covered include knowledge-based and expert systems, AI techniques for knowledge and data management, tools, and methodologies, distributed processing, real-time systems, architectures, data management practices, database design, query languages, security, fault tolerance, statistical databases, algorithms, performance evaluation, and applications.