{"title":"HY-1C COCTS 观测的云层探测和海面温度检索","authors":"Ninghui Li;Lei Guan;Jonathon S. Wright","doi":"10.1109/JSTARS.2024.3485890","DOIUrl":null,"url":null,"abstract":"Sea surface temperature (SST) is a vital oceanic parameter that significantly influences air–sea heat flux and momentum exchange. SST datasets are crucial for identifying and describing both short-term and long-term climate perturbations in the ocean. This article focuses on cloud detection and SST retrievals in the Western Pacific Ocean, using observations obtained by the Chinese Ocean Color and Temperature Scanner (COCTS) onboard the Haiyang-1C satellite. To distinguish between clear-sky and overcast regions, reflectance after sun glint correction and brightness temperature are used as inputs for an alternative decision tree (ADTree). The accuracy of cloud detection is 93.85% for daytime and 91.98% for nighttime, respectively. Application of the cloud detection algorithm improves the accuracy and data availability (spatiotemporal coverage) of SST retrievals. We implement a nonlinear algorithm to retrieve the SST and validate these retrieved values against buoy measurements of SST. Comparisons are conducted for measurements within ±1 h and 0.01° × 0.01° of the retrieval. During the day, the bias and standard deviation (SD) are −0.01 °C and 0.63 °C, respectively, while at night, they stand at −0.08 °C and 0.71 °C, respectively. Furthermore, the intercomparison between the SST products derived from the moderate-resolution imaging spectroradiometer (MODIS) onboard Terra and the results are conducted. During the day, the bias and SD are 0.03 °C and 0.42 °C, respectively, whereas at night, they are 0.25 °C and 0.76 °C, respectively. This article improves the accuracy and applicability of the SST retrieved from the COCTS thermal infrared channels.","PeriodicalId":13116,"journal":{"name":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","volume":"17 ","pages":"19853-19863"},"PeriodicalIF":4.7000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10734229","citationCount":"0","resultStr":"{\"title\":\"Cloud Detection and Sea Surface Temperature Retrieval by HY-1C COCTS Observations\",\"authors\":\"Ninghui Li;Lei Guan;Jonathon S. Wright\",\"doi\":\"10.1109/JSTARS.2024.3485890\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sea surface temperature (SST) is a vital oceanic parameter that significantly influences air–sea heat flux and momentum exchange. SST datasets are crucial for identifying and describing both short-term and long-term climate perturbations in the ocean. This article focuses on cloud detection and SST retrievals in the Western Pacific Ocean, using observations obtained by the Chinese Ocean Color and Temperature Scanner (COCTS) onboard the Haiyang-1C satellite. To distinguish between clear-sky and overcast regions, reflectance after sun glint correction and brightness temperature are used as inputs for an alternative decision tree (ADTree). The accuracy of cloud detection is 93.85% for daytime and 91.98% for nighttime, respectively. Application of the cloud detection algorithm improves the accuracy and data availability (spatiotemporal coverage) of SST retrievals. We implement a nonlinear algorithm to retrieve the SST and validate these retrieved values against buoy measurements of SST. Comparisons are conducted for measurements within ±1 h and 0.01° × 0.01° of the retrieval. During the day, the bias and standard deviation (SD) are −0.01 °C and 0.63 °C, respectively, while at night, they stand at −0.08 °C and 0.71 °C, respectively. Furthermore, the intercomparison between the SST products derived from the moderate-resolution imaging spectroradiometer (MODIS) onboard Terra and the results are conducted. During the day, the bias and SD are 0.03 °C and 0.42 °C, respectively, whereas at night, they are 0.25 °C and 0.76 °C, respectively. This article improves the accuracy and applicability of the SST retrieved from the COCTS thermal infrared channels.\",\"PeriodicalId\":13116,\"journal\":{\"name\":\"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing\",\"volume\":\"17 \",\"pages\":\"19853-19863\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10734229\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10734229/\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10734229/","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Cloud Detection and Sea Surface Temperature Retrieval by HY-1C COCTS Observations
Sea surface temperature (SST) is a vital oceanic parameter that significantly influences air–sea heat flux and momentum exchange. SST datasets are crucial for identifying and describing both short-term and long-term climate perturbations in the ocean. This article focuses on cloud detection and SST retrievals in the Western Pacific Ocean, using observations obtained by the Chinese Ocean Color and Temperature Scanner (COCTS) onboard the Haiyang-1C satellite. To distinguish between clear-sky and overcast regions, reflectance after sun glint correction and brightness temperature are used as inputs for an alternative decision tree (ADTree). The accuracy of cloud detection is 93.85% for daytime and 91.98% for nighttime, respectively. Application of the cloud detection algorithm improves the accuracy and data availability (spatiotemporal coverage) of SST retrievals. We implement a nonlinear algorithm to retrieve the SST and validate these retrieved values against buoy measurements of SST. Comparisons are conducted for measurements within ±1 h and 0.01° × 0.01° of the retrieval. During the day, the bias and standard deviation (SD) are −0.01 °C and 0.63 °C, respectively, while at night, they stand at −0.08 °C and 0.71 °C, respectively. Furthermore, the intercomparison between the SST products derived from the moderate-resolution imaging spectroradiometer (MODIS) onboard Terra and the results are conducted. During the day, the bias and SD are 0.03 °C and 0.42 °C, respectively, whereas at night, they are 0.25 °C and 0.76 °C, respectively. This article improves the accuracy and applicability of the SST retrieved from the COCTS thermal infrared channels.
期刊介绍:
The IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing addresses the growing field of applications in Earth observations and remote sensing, and also provides a venue for the rapidly expanding special issues that are being sponsored by the IEEE Geosciences and Remote Sensing Society. The journal draws upon the experience of the highly successful “IEEE Transactions on Geoscience and Remote Sensing” and provide a complementary medium for the wide range of topics in applied earth observations. The ‘Applications’ areas encompasses the societal benefit areas of the Global Earth Observations Systems of Systems (GEOSS) program. Through deliberations over two years, ministers from 50 countries agreed to identify nine areas where Earth observation could positively impact the quality of life and health of their respective countries. Some of these are areas not traditionally addressed in the IEEE context. These include biodiversity, health and climate. Yet it is the skill sets of IEEE members, in areas such as observations, communications, computers, signal processing, standards and ocean engineering, that form the technical underpinnings of GEOSS. Thus, the Journal attracts a broad range of interests that serves both present members in new ways and expands the IEEE visibility into new areas.