Xuexiong Luo;Sheng Zhang;Jia Wu;Hongyang Chen;Hao Peng;Chuan Zhou;Zhao Li;Shan Xue;Jian Yang
{"title":"ReiPool:用于图层表征学习的强化池化图神经网络","authors":"Xuexiong Luo;Sheng Zhang;Jia Wu;Hongyang Chen;Hao Peng;Chuan Zhou;Zhao Li;Shan Xue;Jian Yang","doi":"10.1109/TKDE.2024.3466508","DOIUrl":null,"url":null,"abstract":"Graph pooling technique as the essential component of graph neural networks has gotten increasing attention recently and it aims to learn graph-level representations for the whole graph. Besides, graph pooling is important in graph classification and graph generation tasks. However, current graph pooling methods mainly coarsen a sequence of small-sized graphs to capture hierarchical structures, potentially resulting in the deterioration of the global structure of the original graph and influencing the quality of graph representations. Furthermore, these methods artificially select the number of graph pooling layers for different graph datasets rather than considering each graph individually. In reality, the structure and size differences among graphs necessitate a specific number of graph pooling layers for each graph. In this work, we propose reinforced pooling graph neural networks via adaptive hybrid graph coarsening networks. Specifically, we design a hybrid graph coarsening strategy to coarsen redundant structures of the original graph while retaining the global structure. In addition, we introduce multi-agent reinforcement learning to adaptively perform the graph coarsening process to extract the most representative coarsened graph for each graph, enhancing the quality of graph-level representations. Finally, we design graph-level contrast to improve the preservation of global information in graph-level representations. Extensive experiments with rich baselines on six benchmark datasets show the effectiveness of ReiPool\n<sup>1</sup>\n.","PeriodicalId":13496,"journal":{"name":"IEEE Transactions on Knowledge and Data Engineering","volume":"36 12","pages":"9109-9122"},"PeriodicalIF":8.9000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ReiPool: Reinforced Pooling Graph Neural Networks for Graph-Level Representation Learning\",\"authors\":\"Xuexiong Luo;Sheng Zhang;Jia Wu;Hongyang Chen;Hao Peng;Chuan Zhou;Zhao Li;Shan Xue;Jian Yang\",\"doi\":\"10.1109/TKDE.2024.3466508\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graph pooling technique as the essential component of graph neural networks has gotten increasing attention recently and it aims to learn graph-level representations for the whole graph. Besides, graph pooling is important in graph classification and graph generation tasks. However, current graph pooling methods mainly coarsen a sequence of small-sized graphs to capture hierarchical structures, potentially resulting in the deterioration of the global structure of the original graph and influencing the quality of graph representations. Furthermore, these methods artificially select the number of graph pooling layers for different graph datasets rather than considering each graph individually. In reality, the structure and size differences among graphs necessitate a specific number of graph pooling layers for each graph. In this work, we propose reinforced pooling graph neural networks via adaptive hybrid graph coarsening networks. Specifically, we design a hybrid graph coarsening strategy to coarsen redundant structures of the original graph while retaining the global structure. In addition, we introduce multi-agent reinforcement learning to adaptively perform the graph coarsening process to extract the most representative coarsened graph for each graph, enhancing the quality of graph-level representations. Finally, we design graph-level contrast to improve the preservation of global information in graph-level representations. Extensive experiments with rich baselines on six benchmark datasets show the effectiveness of ReiPool\\n<sup>1</sup>\\n.\",\"PeriodicalId\":13496,\"journal\":{\"name\":\"IEEE Transactions on Knowledge and Data Engineering\",\"volume\":\"36 12\",\"pages\":\"9109-9122\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Knowledge and Data Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10689369/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Knowledge and Data Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10689369/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
ReiPool: Reinforced Pooling Graph Neural Networks for Graph-Level Representation Learning
Graph pooling technique as the essential component of graph neural networks has gotten increasing attention recently and it aims to learn graph-level representations for the whole graph. Besides, graph pooling is important in graph classification and graph generation tasks. However, current graph pooling methods mainly coarsen a sequence of small-sized graphs to capture hierarchical structures, potentially resulting in the deterioration of the global structure of the original graph and influencing the quality of graph representations. Furthermore, these methods artificially select the number of graph pooling layers for different graph datasets rather than considering each graph individually. In reality, the structure and size differences among graphs necessitate a specific number of graph pooling layers for each graph. In this work, we propose reinforced pooling graph neural networks via adaptive hybrid graph coarsening networks. Specifically, we design a hybrid graph coarsening strategy to coarsen redundant structures of the original graph while retaining the global structure. In addition, we introduce multi-agent reinforcement learning to adaptively perform the graph coarsening process to extract the most representative coarsened graph for each graph, enhancing the quality of graph-level representations. Finally, we design graph-level contrast to improve the preservation of global information in graph-level representations. Extensive experiments with rich baselines on six benchmark datasets show the effectiveness of ReiPool
1
.
期刊介绍:
The IEEE Transactions on Knowledge and Data Engineering encompasses knowledge and data engineering aspects within computer science, artificial intelligence, electrical engineering, computer engineering, and related fields. It provides an interdisciplinary platform for disseminating new developments in knowledge and data engineering and explores the practicality of these concepts in both hardware and software. Specific areas covered include knowledge-based and expert systems, AI techniques for knowledge and data management, tools, and methodologies, distributed processing, real-time systems, architectures, data management practices, database design, query languages, security, fault tolerance, statistical databases, algorithms, performance evaluation, and applications.