评估森林景观恢复项目的遥感框架:提高准确性和有效性

Michelle C. A. Picoli;Kenny Helsen
{"title":"评估森林景观恢复项目的遥感框架:提高准确性和有效性","authors":"Michelle C. A. Picoli;Kenny Helsen","doi":"10.1109/LGRS.2024.3491372","DOIUrl":null,"url":null,"abstract":"Forest and landscape restoration (FLR) initiatives are essential for combating deforestation, preserving biodiversity, and mitigating climate change. Remote sensing emerges as a key tool in evaluating FLR projects by providing accurate and timely data for monitoring and assessment. This letter presents a framework for generating high-quality maps using remote sensing data to assess the biophysical impact of FLR projects. The framework was applied to evaluate the Katanino FLR Project in Zambia. The results showcase a remarkable increase in forest cover, with a forest classification accuracy exceeding 90%. Such encouraging outcomes underscore the efficacy of the project in achieving its restoration goals and highlight the tangible benefits of employing remote sensing tools in FLR evaluation. Moreover, comprehensive FLR assessment, when complemented with diverse evaluation methodologies, facilitates a holistic understanding of FLR project impacts, enabling informed decision-making for the sustainable management of forest landscapes worldwide.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"21 ","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Remote Sensing Framework for Evaluating Forest Landscape Restoration Projects: Enhancing Accuracy and Effectiveness\",\"authors\":\"Michelle C. A. Picoli;Kenny Helsen\",\"doi\":\"10.1109/LGRS.2024.3491372\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Forest and landscape restoration (FLR) initiatives are essential for combating deforestation, preserving biodiversity, and mitigating climate change. Remote sensing emerges as a key tool in evaluating FLR projects by providing accurate and timely data for monitoring and assessment. This letter presents a framework for generating high-quality maps using remote sensing data to assess the biophysical impact of FLR projects. The framework was applied to evaluate the Katanino FLR Project in Zambia. The results showcase a remarkable increase in forest cover, with a forest classification accuracy exceeding 90%. Such encouraging outcomes underscore the efficacy of the project in achieving its restoration goals and highlight the tangible benefits of employing remote sensing tools in FLR evaluation. Moreover, comprehensive FLR assessment, when complemented with diverse evaluation methodologies, facilitates a holistic understanding of FLR project impacts, enabling informed decision-making for the sustainable management of forest landscapes worldwide.\",\"PeriodicalId\":91017,\"journal\":{\"name\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"volume\":\"21 \",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10742514/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10742514/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

森林和景观恢复(FLR)计划对于遏制森林砍伐、保护生物多样性和减缓气候变化至关重要。遥感技术为监测和评估提供了准确、及时的数据,因此成为评估森林与景观恢复项目的重要工具。这封信介绍了一个利用遥感数据生成高质量地图的框架,以评估 FLR 项目的生物物理影响。该框架被用于评估赞比亚的 Katanino FLR 项目。结果显示,森林覆盖率显著提高,森林分类准确率超过 90%。这些令人鼓舞的结果突显了该项目在实现其恢复目标方面的功效,并强调了在森林恢复项目评估中采用遥感工具的切实益处。此外,全面的森林覆盖率评估与多种评估方法相辅相成,有助于全面了解森林覆盖率项目的影响,从而为全球森林景观的可持续管理做出明智的决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Remote Sensing Framework for Evaluating Forest Landscape Restoration Projects: Enhancing Accuracy and Effectiveness
Forest and landscape restoration (FLR) initiatives are essential for combating deforestation, preserving biodiversity, and mitigating climate change. Remote sensing emerges as a key tool in evaluating FLR projects by providing accurate and timely data for monitoring and assessment. This letter presents a framework for generating high-quality maps using remote sensing data to assess the biophysical impact of FLR projects. The framework was applied to evaluate the Katanino FLR Project in Zambia. The results showcase a remarkable increase in forest cover, with a forest classification accuracy exceeding 90%. Such encouraging outcomes underscore the efficacy of the project in achieving its restoration goals and highlight the tangible benefits of employing remote sensing tools in FLR evaluation. Moreover, comprehensive FLR assessment, when complemented with diverse evaluation methodologies, facilitates a holistic understanding of FLR project impacts, enabling informed decision-making for the sustainable management of forest landscapes worldwide.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信