DeepSOZ:从多通道脑电图数据进行癫痫发作时间和空间联合定位的鲁棒深度模型。

Deeksha M Shama, Jiasen Jing, Archana Venkataraman
{"title":"DeepSOZ:从多通道脑电图数据进行癫痫发作时间和空间联合定位的鲁棒深度模型。","authors":"Deeksha M Shama, Jiasen Jing, Archana Venkataraman","doi":"10.1007/978-3-031-43993-3_18","DOIUrl":null,"url":null,"abstract":"<p><p>We propose a robust deep learning framework to simultaneously detect and localize seizure activity from multichannel scalp EEG. Our model, called DeepSOZ, consists of a transformer encoder to generate global and channel-wise encodings. The global branch is combined with an LSTM for temporal seizure detection. In parallel, we employ attention-weighted multi-instance pooling of channel-wise encodings to predict the seizure onset zone. DeepSOZ is trained in a supervised fashion and generates high-resolution predictions on the order of each second (temporal) and EEG channel (spatial). We validate DeepSOZ via bootstrapped nested cross-validation on a large dataset of 120 patients curated from the Temple University Hospital corpus. As compared to baseline approaches, DeepSOZ provides robust overall performance in our multi-task learning setup. We also evaluate the intra-seizure and intra-patient consistency of DeepSOZ as a first step to establishing its trustworthiness for integration into the clinical workflow for epilepsy.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"2023 ","pages":"184-194"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11545985/pdf/","citationCount":"0","resultStr":"{\"title\":\"DeepSOZ: A Robust Deep Model for Joint Temporal and Spatial Seizure Onset Localization from Multichannel EEG Data.\",\"authors\":\"Deeksha M Shama, Jiasen Jing, Archana Venkataraman\",\"doi\":\"10.1007/978-3-031-43993-3_18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We propose a robust deep learning framework to simultaneously detect and localize seizure activity from multichannel scalp EEG. Our model, called DeepSOZ, consists of a transformer encoder to generate global and channel-wise encodings. The global branch is combined with an LSTM for temporal seizure detection. In parallel, we employ attention-weighted multi-instance pooling of channel-wise encodings to predict the seizure onset zone. DeepSOZ is trained in a supervised fashion and generates high-resolution predictions on the order of each second (temporal) and EEG channel (spatial). We validate DeepSOZ via bootstrapped nested cross-validation on a large dataset of 120 patients curated from the Temple University Hospital corpus. As compared to baseline approaches, DeepSOZ provides robust overall performance in our multi-task learning setup. We also evaluate the intra-seizure and intra-patient consistency of DeepSOZ as a first step to establishing its trustworthiness for integration into the clinical workflow for epilepsy.</p>\",\"PeriodicalId\":94280,\"journal\":{\"name\":\"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention\",\"volume\":\"2023 \",\"pages\":\"184-194\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11545985/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-031-43993-3_18\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-43993-3_18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种稳健的深度学习框架,可同时检测和定位多通道头皮脑电图中的癫痫发作活动。我们的模型被称为 DeepSOZ,由变压器编码器组成,用于生成全局编码和信道编码。全局分支与 LSTM 相结合,用于颞叶癫痫发作检测。与此同时,我们采用注意力加权多实例通道编码池来预测癫痫发作区。DeepSOZ 采用有监督的方式进行训练,并按每秒(时间)和脑电图通道(空间)的顺序生成高分辨率预测。我们在天普大学医院语料库中收集的 120 名患者的大型数据集上通过引导嵌套交叉验证验证了 DeepSOZ。与基线方法相比,DeepSOZ 在我们的多任务学习设置中提供了强大的整体性能。我们还评估了 DeepSOZ 在发作内和患者内的一致性,以此作为建立其可信度的第一步,以便将其整合到癫痫临床工作流程中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DeepSOZ: A Robust Deep Model for Joint Temporal and Spatial Seizure Onset Localization from Multichannel EEG Data.

We propose a robust deep learning framework to simultaneously detect and localize seizure activity from multichannel scalp EEG. Our model, called DeepSOZ, consists of a transformer encoder to generate global and channel-wise encodings. The global branch is combined with an LSTM for temporal seizure detection. In parallel, we employ attention-weighted multi-instance pooling of channel-wise encodings to predict the seizure onset zone. DeepSOZ is trained in a supervised fashion and generates high-resolution predictions on the order of each second (temporal) and EEG channel (spatial). We validate DeepSOZ via bootstrapped nested cross-validation on a large dataset of 120 patients curated from the Temple University Hospital corpus. As compared to baseline approaches, DeepSOZ provides robust overall performance in our multi-task learning setup. We also evaluate the intra-seizure and intra-patient consistency of DeepSOZ as a first step to establishing its trustworthiness for integration into the clinical workflow for epilepsy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信