用于快速鉴定榛子栽培品种和原产地的光谱法比较分析。

B Torres-Cobos, A Tres, S Vichi, F Guardiola, M Rovira, A Romero, V Baeten, J A Fernández-Pierna
{"title":"用于快速鉴定榛子栽培品种和原产地的光谱法比较分析。","authors":"B Torres-Cobos, A Tres, S Vichi, F Guardiola, M Rovira, A Romero, V Baeten, J A Fernández-Pierna","doi":"10.1016/j.saa.2024.125367","DOIUrl":null,"url":null,"abstract":"<p><p>Hazelnut market prices fluctuate significantly based on cultivar and provenance, making them susceptible to counterfeiting. To develop an accurate authentication method, we compared the performances of three spectroscopic methods: near infrared (NIR), handheld near infrared (hNIR), and medium infrared (MIR), on over 300 samples from various origins, cultivars, and harvest years. Spectroscopic fingerprints were used to develop and externally validate PLS-DA classification models. Both cultivar and origin models showed high accuracy in external validation. The hNIR model effectively distinguished cultivars but struggled with geographic distinctions due to lower sensitivity. NIR and MIR models showed over 93 % accuracy, with NIR slightly outperforming MIR for geographic origin. NIR proved to be a fast and suitable tool for hazelnut authentication. This study is the first to systematically compare spectroscopic tools for authenticating hazelnut cultivar and origin using the same dataset, offering valuable insights for future food authentication applications.</p>","PeriodicalId":94213,"journal":{"name":"Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy","volume":"326 ","pages":"125367"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative analysis of spectroscopic methods for rapid authentication of hazelnut cultivar and origin.\",\"authors\":\"B Torres-Cobos, A Tres, S Vichi, F Guardiola, M Rovira, A Romero, V Baeten, J A Fernández-Pierna\",\"doi\":\"10.1016/j.saa.2024.125367\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hazelnut market prices fluctuate significantly based on cultivar and provenance, making them susceptible to counterfeiting. To develop an accurate authentication method, we compared the performances of three spectroscopic methods: near infrared (NIR), handheld near infrared (hNIR), and medium infrared (MIR), on over 300 samples from various origins, cultivars, and harvest years. Spectroscopic fingerprints were used to develop and externally validate PLS-DA classification models. Both cultivar and origin models showed high accuracy in external validation. The hNIR model effectively distinguished cultivars but struggled with geographic distinctions due to lower sensitivity. NIR and MIR models showed over 93 % accuracy, with NIR slightly outperforming MIR for geographic origin. NIR proved to be a fast and suitable tool for hazelnut authentication. This study is the first to systematically compare spectroscopic tools for authenticating hazelnut cultivar and origin using the same dataset, offering valuable insights for future food authentication applications.</p>\",\"PeriodicalId\":94213,\"journal\":{\"name\":\"Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy\",\"volume\":\"326 \",\"pages\":\"125367\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.saa.2024.125367\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.saa.2024.125367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/1 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

榛子的市场价格会因栽培品种和产地而大幅波动,因此很容易被伪造。为了开发一种准确的鉴定方法,我们在来自不同产地、栽培品种和收获年份的 300 多个样品上比较了三种光谱方法的性能:近红外(NIR)、手持式近红外(hNIR)和中红外(MIR)。光谱指纹被用于开发和外部验证 PLS-DA 分类模型。在外部验证中,栽培品种和原产地模型都显示出较高的准确性。hNIR 模型能有效区分栽培品种,但由于灵敏度较低,在地理区分方面比较吃力。近红外和中红外模型的准确率超过 93%,在地理产地方面,近红外略优于中红外。事实证明,近红外是一种快速、适用的榛子鉴定工具。这项研究首次系统地比较了使用同一数据集鉴定榛子栽培品种和原产地的光谱工具,为未来的食品鉴定应用提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparative analysis of spectroscopic methods for rapid authentication of hazelnut cultivar and origin.

Hazelnut market prices fluctuate significantly based on cultivar and provenance, making them susceptible to counterfeiting. To develop an accurate authentication method, we compared the performances of three spectroscopic methods: near infrared (NIR), handheld near infrared (hNIR), and medium infrared (MIR), on over 300 samples from various origins, cultivars, and harvest years. Spectroscopic fingerprints were used to develop and externally validate PLS-DA classification models. Both cultivar and origin models showed high accuracy in external validation. The hNIR model effectively distinguished cultivars but struggled with geographic distinctions due to lower sensitivity. NIR and MIR models showed over 93 % accuracy, with NIR slightly outperforming MIR for geographic origin. NIR proved to be a fast and suitable tool for hazelnut authentication. This study is the first to systematically compare spectroscopic tools for authenticating hazelnut cultivar and origin using the same dataset, offering valuable insights for future food authentication applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信