持久图空间的度量几何。

Mauricio Che, Fernando Galaz-García, Luis Guijarro, Ingrid Amaranta Membrillo Solis
{"title":"持久图空间的度量几何。","authors":"Mauricio Che, Fernando Galaz-García, Luis Guijarro, Ingrid Amaranta Membrillo Solis","doi":"10.1007/s41468-024-00189-2","DOIUrl":null,"url":null,"abstract":"<p><p>Persistence diagrams are objects that play a central role in topological data analysis. In the present article, we investigate the local and global geometric properties of spaces of persistence diagrams. In order to do this, we construct a family of functors <math><msub><mi>D</mi> <mi>p</mi></msub> </math> , <math><mrow><mn>1</mn> <mo>≤</mo> <mi>p</mi> <mo>≤</mo> <mi>∞</mi></mrow> </math> , that assign, to each metric pair (<i>X</i>, <i>A</i>), a pointed metric space <math> <mrow><msub><mi>D</mi> <mi>p</mi></msub> <mrow><mo>(</mo> <mi>X</mi> <mo>,</mo> <mi>A</mi> <mo>)</mo></mrow> </mrow> </math> . Moreover, we show that <math><msub><mi>D</mi> <mi>∞</mi></msub> </math> is sequentially continuous with respect to the Gromov-Hausdorff convergence of metric pairs, and we prove that <math><msub><mi>D</mi> <mi>p</mi></msub> </math> preserves several useful metric properties, such as completeness and separability, for <math><mrow><mi>p</mi> <mo>∈</mo> <mo>[</mo> <mn>1</mn> <mo>,</mo> <mi>∞</mi> <mo>)</mo></mrow> </math> , and geodesicity and non-negative curvature in the sense of Alexandrov, for <math><mrow><mi>p</mi> <mo>=</mo> <mn>2</mn></mrow> </math> . For the latter case, we describe the metric of the space of directions at the empty diagram. We also show that the Fréchet mean set of a Borel probability measure on <math> <mrow><msub><mi>D</mi> <mi>p</mi></msub> <mrow><mo>(</mo> <mi>X</mi> <mo>,</mo> <mi>A</mi> <mo>)</mo></mrow> </mrow> </math> , <math><mrow><mn>1</mn> <mo>≤</mo> <mi>p</mi> <mo>≤</mo> <mi>∞</mi></mrow> </math> , with finite second moment and compact support is non-empty. As an application of our geometric framework, we prove that the space of Euclidean persistence diagrams, <math> <mrow><msub><mi>D</mi> <mi>p</mi></msub> <mrow><mo>(</mo> <msup><mrow><mi>R</mi></mrow> <mrow><mn>2</mn> <mi>n</mi></mrow> </msup> <mo>,</mo> <msub><mi>Δ</mi> <mi>n</mi></msub> <mo>)</mo></mrow> </mrow> </math> , <math><mrow><mn>1</mn> <mo>≤</mo> <mi>n</mi></mrow> </math> and <math><mrow><mn>1</mn> <mo>≤</mo> <mi>p</mi> <mo><</mo> <mi>∞</mi></mrow> </math> , has infinite covering, Hausdorff, asymptotic, Assouad, and Assouad-Nagata dimensions.</p>","PeriodicalId":73600,"journal":{"name":"Journal of applied and computational topology","volume":"8 8","pages":"2197-2246"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11541355/pdf/","citationCount":"0","resultStr":"{\"title\":\"Metric geometry of spaces of persistence diagrams.\",\"authors\":\"Mauricio Che, Fernando Galaz-García, Luis Guijarro, Ingrid Amaranta Membrillo Solis\",\"doi\":\"10.1007/s41468-024-00189-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Persistence diagrams are objects that play a central role in topological data analysis. In the present article, we investigate the local and global geometric properties of spaces of persistence diagrams. In order to do this, we construct a family of functors <math><msub><mi>D</mi> <mi>p</mi></msub> </math> , <math><mrow><mn>1</mn> <mo>≤</mo> <mi>p</mi> <mo>≤</mo> <mi>∞</mi></mrow> </math> , that assign, to each metric pair (<i>X</i>, <i>A</i>), a pointed metric space <math> <mrow><msub><mi>D</mi> <mi>p</mi></msub> <mrow><mo>(</mo> <mi>X</mi> <mo>,</mo> <mi>A</mi> <mo>)</mo></mrow> </mrow> </math> . Moreover, we show that <math><msub><mi>D</mi> <mi>∞</mi></msub> </math> is sequentially continuous with respect to the Gromov-Hausdorff convergence of metric pairs, and we prove that <math><msub><mi>D</mi> <mi>p</mi></msub> </math> preserves several useful metric properties, such as completeness and separability, for <math><mrow><mi>p</mi> <mo>∈</mo> <mo>[</mo> <mn>1</mn> <mo>,</mo> <mi>∞</mi> <mo>)</mo></mrow> </math> , and geodesicity and non-negative curvature in the sense of Alexandrov, for <math><mrow><mi>p</mi> <mo>=</mo> <mn>2</mn></mrow> </math> . For the latter case, we describe the metric of the space of directions at the empty diagram. We also show that the Fréchet mean set of a Borel probability measure on <math> <mrow><msub><mi>D</mi> <mi>p</mi></msub> <mrow><mo>(</mo> <mi>X</mi> <mo>,</mo> <mi>A</mi> <mo>)</mo></mrow> </mrow> </math> , <math><mrow><mn>1</mn> <mo>≤</mo> <mi>p</mi> <mo>≤</mo> <mi>∞</mi></mrow> </math> , with finite second moment and compact support is non-empty. As an application of our geometric framework, we prove that the space of Euclidean persistence diagrams, <math> <mrow><msub><mi>D</mi> <mi>p</mi></msub> <mrow><mo>(</mo> <msup><mrow><mi>R</mi></mrow> <mrow><mn>2</mn> <mi>n</mi></mrow> </msup> <mo>,</mo> <msub><mi>Δ</mi> <mi>n</mi></msub> <mo>)</mo></mrow> </mrow> </math> , <math><mrow><mn>1</mn> <mo>≤</mo> <mi>n</mi></mrow> </math> and <math><mrow><mn>1</mn> <mo>≤</mo> <mi>p</mi> <mo><</mo> <mi>∞</mi></mrow> </math> , has infinite covering, Hausdorff, asymptotic, Assouad, and Assouad-Nagata dimensions.</p>\",\"PeriodicalId\":73600,\"journal\":{\"name\":\"Journal of applied and computational topology\",\"volume\":\"8 8\",\"pages\":\"2197-2246\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11541355/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of applied and computational topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s41468-024-00189-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of applied and computational topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41468-024-00189-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/3 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

持久图是拓扑数据分析中的核心对象。在本文中,我们将研究持久图空间的局部和全局几何特性。为此,我们构建了一系列函数 D p , 1 ≤ p ≤ ∞ , 为每个度量对 (X, A) 分配一个尖度量空间 D p ( X , A ) 。此外,我们证明 D ∞ 在度量对的格罗莫夫-豪斯多夫收敛性方面是连续的,并证明 D p 保留了几个有用的度量特性,如对于 p∈ [ 1 , ∞ ) 的完备性和可分性,以及大地性和非大地性。 的情况下,D p 保留了几个有用的度量特性,如完整性和可分性;在 p = 2 的情况下,D p 保留了大地性和亚历山德罗夫意义上的非负曲率。对于后一种情况,我们描述了空图处方向空间的度量。我们还证明了在 D p ( X , A ) 上的博尔概率度量的弗雷谢特均值集,1 ≤ p ≤ ∞,具有有限第二矩和紧凑支持,是非空的。作为几何框架的一个应用,我们证明了欧氏持久图空间 D p ( R 2 n , Δ n ) , 1 ≤ n 且 1 ≤ p ∞ 具有无限覆盖维、豪斯多夫维、渐近维、阿苏阿德维和阿苏阿德-纳加塔维。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Metric geometry of spaces of persistence diagrams.

Persistence diagrams are objects that play a central role in topological data analysis. In the present article, we investigate the local and global geometric properties of spaces of persistence diagrams. In order to do this, we construct a family of functors D p , 1 p , that assign, to each metric pair (XA), a pointed metric space D p ( X , A ) . Moreover, we show that D is sequentially continuous with respect to the Gromov-Hausdorff convergence of metric pairs, and we prove that D p preserves several useful metric properties, such as completeness and separability, for p [ 1 , ) , and geodesicity and non-negative curvature in the sense of Alexandrov, for p = 2 . For the latter case, we describe the metric of the space of directions at the empty diagram. We also show that the Fréchet mean set of a Borel probability measure on D p ( X , A ) , 1 p , with finite second moment and compact support is non-empty. As an application of our geometric framework, we prove that the space of Euclidean persistence diagrams, D p ( R 2 n , Δ n ) , 1 n and 1 p < , has infinite covering, Hausdorff, asymptotic, Assouad, and Assouad-Nagata dimensions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信