{"title":"利用几何学习和预训练策略增强蛋白质稳定性预测。","authors":"Minghui Li","doi":"10.1038/s43588-024-00724-2","DOIUrl":null,"url":null,"abstract":"A recent study introduces a series of approaches that predict protein fitness and stability after the introduction of mutations. The work focuses on combining different data and pre-training to overcome data scarcity.","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":"4 11","pages":"807-808"},"PeriodicalIF":12.0000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing protein stability prediction with geometric learning and pre-training strategies\",\"authors\":\"Minghui Li\",\"doi\":\"10.1038/s43588-024-00724-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A recent study introduces a series of approaches that predict protein fitness and stability after the introduction of mutations. The work focuses on combining different data and pre-training to overcome data scarcity.\",\"PeriodicalId\":74246,\"journal\":{\"name\":\"Nature computational science\",\"volume\":\"4 11\",\"pages\":\"807-808\"},\"PeriodicalIF\":12.0000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature computational science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s43588-024-00724-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature computational science","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43588-024-00724-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Enhancing protein stability prediction with geometric learning and pre-training strategies
A recent study introduces a series of approaches that predict protein fitness and stability after the introduction of mutations. The work focuses on combining different data and pre-training to overcome data scarcity.