{"title":"通过活性构件控制毒性的深度学习配体生成方法。","authors":"Pengyong Li, Kaihao Zhang, Tianxiao Liu, Ruiqiang Lu, Yangyang Chen, Xiaojun Yao, Lin Gao, Xiangxiang Zeng","doi":"10.1038/s43588-024-00718-0","DOIUrl":null,"url":null,"abstract":"Deep generative models are gaining attention in the field of de novo drug design. However, the rational design of ligand molecules for novel targets remains challenging, particularly in controlling the properties of the generated molecules. Here, inspired by the DNA-encoded compound library technique, we introduce DeepBlock, a deep learning approach for block-based ligand generation tailored to target protein sequences while enabling precise property control. DeepBlock neatly divides the generation process into two steps: building blocks generation and molecule reconstruction, accomplished by a neural network and a rule-based reconstruction algorithm we proposed, respectively. Furthermore, DeepBlock synergizes the optimization algorithm and deep learning to regulate the properties of the generated molecules. Experiments show that DeepBlock outperforms existing methods in generating ligands with affinity, synthetic accessibility and drug likeness. Moreover, when integrated with simulated annealing or Bayesian optimization using toxicity as the optimization objective, DeepBlock successfully generates ligands with low toxicity while preserving affinity with the target. DeepBlock is a deep learning framework for ligand generation, inspired by the DNA-encoded compound library technique, that enhances ligand design with building blocks and a rule-based reconstruction algorithm, achieving better drug properties.","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":"4 11","pages":"851-864"},"PeriodicalIF":12.0000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A deep learning approach for rational ligand generation with toxicity control via reactive building blocks\",\"authors\":\"Pengyong Li, Kaihao Zhang, Tianxiao Liu, Ruiqiang Lu, Yangyang Chen, Xiaojun Yao, Lin Gao, Xiangxiang Zeng\",\"doi\":\"10.1038/s43588-024-00718-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep generative models are gaining attention in the field of de novo drug design. However, the rational design of ligand molecules for novel targets remains challenging, particularly in controlling the properties of the generated molecules. Here, inspired by the DNA-encoded compound library technique, we introduce DeepBlock, a deep learning approach for block-based ligand generation tailored to target protein sequences while enabling precise property control. DeepBlock neatly divides the generation process into two steps: building blocks generation and molecule reconstruction, accomplished by a neural network and a rule-based reconstruction algorithm we proposed, respectively. Furthermore, DeepBlock synergizes the optimization algorithm and deep learning to regulate the properties of the generated molecules. Experiments show that DeepBlock outperforms existing methods in generating ligands with affinity, synthetic accessibility and drug likeness. Moreover, when integrated with simulated annealing or Bayesian optimization using toxicity as the optimization objective, DeepBlock successfully generates ligands with low toxicity while preserving affinity with the target. DeepBlock is a deep learning framework for ligand generation, inspired by the DNA-encoded compound library technique, that enhances ligand design with building blocks and a rule-based reconstruction algorithm, achieving better drug properties.\",\"PeriodicalId\":74246,\"journal\":{\"name\":\"Nature computational science\",\"volume\":\"4 11\",\"pages\":\"851-864\"},\"PeriodicalIF\":12.0000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature computational science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s43588-024-00718-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature computational science","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43588-024-00718-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
A deep learning approach for rational ligand generation with toxicity control via reactive building blocks
Deep generative models are gaining attention in the field of de novo drug design. However, the rational design of ligand molecules for novel targets remains challenging, particularly in controlling the properties of the generated molecules. Here, inspired by the DNA-encoded compound library technique, we introduce DeepBlock, a deep learning approach for block-based ligand generation tailored to target protein sequences while enabling precise property control. DeepBlock neatly divides the generation process into two steps: building blocks generation and molecule reconstruction, accomplished by a neural network and a rule-based reconstruction algorithm we proposed, respectively. Furthermore, DeepBlock synergizes the optimization algorithm and deep learning to regulate the properties of the generated molecules. Experiments show that DeepBlock outperforms existing methods in generating ligands with affinity, synthetic accessibility and drug likeness. Moreover, when integrated with simulated annealing or Bayesian optimization using toxicity as the optimization objective, DeepBlock successfully generates ligands with low toxicity while preserving affinity with the target. DeepBlock is a deep learning framework for ligand generation, inspired by the DNA-encoded compound library technique, that enhances ligand design with building blocks and a rule-based reconstruction algorithm, achieving better drug properties.