TC10 以不同方式控制着皮质和海马神经元生长锥中 Exo70 的动态。

IF 2.4 Q3 BIOPHYSICS
Biophysical reports Pub Date : 2024-12-11 Epub Date: 2024-11-07 DOI:10.1016/j.bpr.2024.100186
Hiteshika Gosain, Karin B Busch
{"title":"TC10 以不同方式控制着皮质和海马神经元生长锥中 Exo70 的动态。","authors":"Hiteshika Gosain, Karin B Busch","doi":"10.1016/j.bpr.2024.100186","DOIUrl":null,"url":null,"abstract":"<p><p>The exocyst is an octameric protein complex that acts as a tether for GOLGI-derived vesicles at the plasma membrane during exocytosis. It is involved in membrane expansion during axonal outgrowth. Exo70 is a major subunit of the exocyst complex and is controlled by TC10, a Rho family GTPase. How TC10 affects the dynamics of Exo70 at the plasma membrane is not well understood. There is also evidence that TC10 controls Exo70 dynamics differently in nonpolar cells and axons. To address this, we used super-resolution microscopy to study the spatially resolved effects of TC10 on Exo70 dynamics in HeLa cells and the growth cone of cortical and hippocampal neurons. We generated single-particle localization and trajectory maps and extracted mean square displacements, diffusion coefficients, and alpha coefficients to characterize Exo70 diffusion. We found that the diffusivity of Exo70 was different in nonpolar cells and the growth cone of neurons. TC10 stimulated the mobility of Exo70 in HeLa cells but decreased the diffusion of Exo70 in the growth cone of cortical neurons. In contrast to cortical neurons, TC10 overexpression did not affect the mobility of Exo70 in the axonal growth cone of hippocampal neurons. These data suggest that mainly exocyst tethering in cortical neurons was under the control of TC10.</p>","PeriodicalId":72402,"journal":{"name":"Biophysical reports","volume":" ","pages":"100186"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11617994/pdf/","citationCount":"0","resultStr":"{\"title\":\"TC10 differently controls the dynamics of Exo70 in growth cones of cortical and hippocampal neurons.\",\"authors\":\"Hiteshika Gosain, Karin B Busch\",\"doi\":\"10.1016/j.bpr.2024.100186\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The exocyst is an octameric protein complex that acts as a tether for GOLGI-derived vesicles at the plasma membrane during exocytosis. It is involved in membrane expansion during axonal outgrowth. Exo70 is a major subunit of the exocyst complex and is controlled by TC10, a Rho family GTPase. How TC10 affects the dynamics of Exo70 at the plasma membrane is not well understood. There is also evidence that TC10 controls Exo70 dynamics differently in nonpolar cells and axons. To address this, we used super-resolution microscopy to study the spatially resolved effects of TC10 on Exo70 dynamics in HeLa cells and the growth cone of cortical and hippocampal neurons. We generated single-particle localization and trajectory maps and extracted mean square displacements, diffusion coefficients, and alpha coefficients to characterize Exo70 diffusion. We found that the diffusivity of Exo70 was different in nonpolar cells and the growth cone of neurons. TC10 stimulated the mobility of Exo70 in HeLa cells but decreased the diffusion of Exo70 in the growth cone of cortical neurons. In contrast to cortical neurons, TC10 overexpression did not affect the mobility of Exo70 in the axonal growth cone of hippocampal neurons. These data suggest that mainly exocyst tethering in cortical neurons was under the control of TC10.</p>\",\"PeriodicalId\":72402,\"journal\":{\"name\":\"Biophysical reports\",\"volume\":\" \",\"pages\":\"100186\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11617994/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biophysical reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.bpr.2024.100186\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.bpr.2024.100186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/7 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

外囊是一种八聚体蛋白复合物,在外排过程中可作为质膜上 GOLGI 衍生囊泡的系链。它参与轴突生长过程中的膜扩张。Exo70 是外囊复合体的一个主要亚基,受 Rho 家族 GTPase TC10 的控制。TC10 如何影响 Exo70 在质膜上的动态,目前尚不十分清楚。也有证据表明,TC10 在非极性细胞和轴突中控制 Exo70 的动态是不同的。为了解决这个问题,我们使用超分辨率显微镜研究了 TC10 对 HeLa 细胞以及皮质和海马神经元生长锥中 Exo70 动态的空间分辨效应。我们生成了单粒子定位和轨迹图,并提取了均方位移、扩散系数和阿尔法系数,以描述Exo70扩散的特征。我们发现,Exo70在非极性细胞和神经元生长锥中的扩散性不同。TC10刺激了Exo70在HeLa细胞中的流动性,但却降低了Exo70在大脑皮层神经元生长锥中的扩散。与大脑皮层神经元相反,TC10的过表达并不影响Exo70在海马神经元轴突生长锥中的流动性。这些数据表明,皮质神经元中的外囊系链主要受TC10控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TC10 differently controls the dynamics of Exo70 in growth cones of cortical and hippocampal neurons.

The exocyst is an octameric protein complex that acts as a tether for GOLGI-derived vesicles at the plasma membrane during exocytosis. It is involved in membrane expansion during axonal outgrowth. Exo70 is a major subunit of the exocyst complex and is controlled by TC10, a Rho family GTPase. How TC10 affects the dynamics of Exo70 at the plasma membrane is not well understood. There is also evidence that TC10 controls Exo70 dynamics differently in nonpolar cells and axons. To address this, we used super-resolution microscopy to study the spatially resolved effects of TC10 on Exo70 dynamics in HeLa cells and the growth cone of cortical and hippocampal neurons. We generated single-particle localization and trajectory maps and extracted mean square displacements, diffusion coefficients, and alpha coefficients to characterize Exo70 diffusion. We found that the diffusivity of Exo70 was different in nonpolar cells and the growth cone of neurons. TC10 stimulated the mobility of Exo70 in HeLa cells but decreased the diffusion of Exo70 in the growth cone of cortical neurons. In contrast to cortical neurons, TC10 overexpression did not affect the mobility of Exo70 in the axonal growth cone of hippocampal neurons. These data suggest that mainly exocyst tethering in cortical neurons was under the control of TC10.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biophysical reports
Biophysical reports Biophysics
CiteScore
2.40
自引率
0.00%
发文量
0
审稿时长
75 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信