利用卷积网络对单搏动心脏 CT 扫描进行运动补偿的 4DCT 重建。

Zhenyao Yan, Li Zhang, Quanzheng Li, Dufan Wu
{"title":"利用卷积网络对单搏动心脏 CT 扫描进行运动补偿的 4DCT 重建。","authors":"Zhenyao Yan, Li Zhang, Quanzheng Li, Dufan Wu","doi":"10.1117/12.3005368","DOIUrl":null,"url":null,"abstract":"<p><p>We proposed a deep learning-based method for single-heartbeat 4D cardiac CT reconstruction, where a single cardiac cycle was split into multiple phases for reconstruction. First, we pre-reconstruct each phase using the projection data from itself and the neighboring phases. The pre-reconstructions are fed into a supervised registration network to generate the deformation fields between different phases. The deformation fields are trained so that it can match the ground truth images from the corresponding phases. The deformation fields are then used in the FBP-and-wrap method for motion-compensated reconstruction, where a subsequent network is used to remove residual artifacts. The proposed method was validated with simulation data from 40 4D cardiac CT scans and demonstrated improved RMSE and SSIM and less blurring compared to FBP and PICCS.</p>","PeriodicalId":74505,"journal":{"name":"Proceedings of SPIE--the International Society for Optical Engineering","volume":"12925 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11555688/pdf/","citationCount":"0","resultStr":"{\"title\":\"Motion-compensated 4DCT reconstruction from single-beat cardiac CT scans using convolutional networks.\",\"authors\":\"Zhenyao Yan, Li Zhang, Quanzheng Li, Dufan Wu\",\"doi\":\"10.1117/12.3005368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We proposed a deep learning-based method for single-heartbeat 4D cardiac CT reconstruction, where a single cardiac cycle was split into multiple phases for reconstruction. First, we pre-reconstruct each phase using the projection data from itself and the neighboring phases. The pre-reconstructions are fed into a supervised registration network to generate the deformation fields between different phases. The deformation fields are trained so that it can match the ground truth images from the corresponding phases. The deformation fields are then used in the FBP-and-wrap method for motion-compensated reconstruction, where a subsequent network is used to remove residual artifacts. The proposed method was validated with simulation data from 40 4D cardiac CT scans and demonstrated improved RMSE and SSIM and less blurring compared to FBP and PICCS.</p>\",\"PeriodicalId\":74505,\"journal\":{\"name\":\"Proceedings of SPIE--the International Society for Optical Engineering\",\"volume\":\"12925 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11555688/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of SPIE--the International Society for Optical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.3005368\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/4/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of SPIE--the International Society for Optical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3005368","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/1 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种基于深度学习的单心跳四维心脏 CT 重建方法,将一个心脏周期分成多个阶段进行重建。首先,我们使用自身和相邻相位的投影数据对每个相位进行预重建。预重建数据被输入一个有监督的配准网络,以生成不同相位之间的形变场。变形场经过训练后,可以与相应阶段的地面实况图像相匹配。然后,变形场将被用于 FBP 和包裹法的运动补偿重建中,随后的网络将用于去除残留的伪影。我们用 40 个 4D 心脏 CT 扫描的模拟数据对所提出的方法进行了验证,结果表明,与 FBP 和 PICCS 相比,该方法的 RMSE 和 SSIM 均有所改善,模糊现象也更少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Motion-compensated 4DCT reconstruction from single-beat cardiac CT scans using convolutional networks.

We proposed a deep learning-based method for single-heartbeat 4D cardiac CT reconstruction, where a single cardiac cycle was split into multiple phases for reconstruction. First, we pre-reconstruct each phase using the projection data from itself and the neighboring phases. The pre-reconstructions are fed into a supervised registration network to generate the deformation fields between different phases. The deformation fields are trained so that it can match the ground truth images from the corresponding phases. The deformation fields are then used in the FBP-and-wrap method for motion-compensated reconstruction, where a subsequent network is used to remove residual artifacts. The proposed method was validated with simulation data from 40 4D cardiac CT scans and demonstrated improved RMSE and SSIM and less blurring compared to FBP and PICCS.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信