利用未标记的脑电图数据预测心脏骤停后昏迷患者的神经功能恢复。

Computing in cardiology Pub Date : 2023-10-01 Epub Date: 2023-12-26 DOI:10.22489/CinC.2023.308
Isaac Sears, Augusto Garcia-Agundez, George Zerveas, William Rudman, Laura Mercurio, Corey E Ventetuolo, Adeel Abbasi, Carsten Eickhoff
{"title":"利用未标记的脑电图数据预测心脏骤停后昏迷患者的神经功能恢复。","authors":"Isaac Sears, Augusto Garcia-Agundez, George Zerveas, William Rudman, Laura Mercurio, Corey E Ventetuolo, Adeel Abbasi, Carsten Eickhoff","doi":"10.22489/CinC.2023.308","DOIUrl":null,"url":null,"abstract":"<p><p>In response to the 2023 George B. Moody PhysioNet Challenge, we propose an automated, unsupervised pre-training approach to boost the performance of models that predict neurologic outcomes after cardiac arrest. Our team, (BrownBAI), developed a model architecture consisting of three parts: a pre-processor to convert raw electroencephalograms (EEGs) into two-dimensional spectrograms, a three-layer convolutional neural network (CNN) encoder for unsupervised pre-training, and a time series transformer (TST) model. We trained the CNN encoder on unlabeled five-minute EEG samples from the Temple University EEG Corpus (TUEG), which included more than 20x the patients available in the PhysioNet competition training dataset. We then incorporated the pre-trained encoder into the TST as a base layer and trained the composite model as a classifier on EEGs from the 2023 PhysioNet Challenge dataset. Our team was not able to submit an official competition entry and was therefore not scored on the test set. However, in a side-by-side comparison on the competition training dataset, our model performed better with a pretrained (competition score 0.351), rather than randomly initialized (competition score 0.211) CNN encoder layer. These results show the potential benefits of leveraging unlabeled data to boost task-specific performance of predictive EEG models.</p>","PeriodicalId":72683,"journal":{"name":"Computing in cardiology","volume":"50 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11544604/pdf/","citationCount":"0","resultStr":"{\"title\":\"Leveraging Unlabeled Electroencephalographic Data to Predict Neurological Recovery for Comatose Patients Following Cardiac Arrest.\",\"authors\":\"Isaac Sears, Augusto Garcia-Agundez, George Zerveas, William Rudman, Laura Mercurio, Corey E Ventetuolo, Adeel Abbasi, Carsten Eickhoff\",\"doi\":\"10.22489/CinC.2023.308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In response to the 2023 George B. Moody PhysioNet Challenge, we propose an automated, unsupervised pre-training approach to boost the performance of models that predict neurologic outcomes after cardiac arrest. Our team, (BrownBAI), developed a model architecture consisting of three parts: a pre-processor to convert raw electroencephalograms (EEGs) into two-dimensional spectrograms, a three-layer convolutional neural network (CNN) encoder for unsupervised pre-training, and a time series transformer (TST) model. We trained the CNN encoder on unlabeled five-minute EEG samples from the Temple University EEG Corpus (TUEG), which included more than 20x the patients available in the PhysioNet competition training dataset. We then incorporated the pre-trained encoder into the TST as a base layer and trained the composite model as a classifier on EEGs from the 2023 PhysioNet Challenge dataset. Our team was not able to submit an official competition entry and was therefore not scored on the test set. However, in a side-by-side comparison on the competition training dataset, our model performed better with a pretrained (competition score 0.351), rather than randomly initialized (competition score 0.211) CNN encoder layer. These results show the potential benefits of leveraging unlabeled data to boost task-specific performance of predictive EEG models.</p>\",\"PeriodicalId\":72683,\"journal\":{\"name\":\"Computing in cardiology\",\"volume\":\"50 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11544604/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computing in cardiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22489/CinC.2023.308\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/12/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computing in cardiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22489/CinC.2023.308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/26 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了应对 2023 年乔治-B-穆迪 PhysioNet 挑战赛,我们提出了一种自动、无监督的预训练方法,以提高预测心脏骤停后神经系统结果的模型的性能。我们的团队(BrownBAI)开发的模型架构由三部分组成:将原始脑电图(EEG)转换为二维频谱图的预处理器、用于无监督预训练的三层卷积神经网络(CNN)编码器和时间序列转换器(TST)模型。我们在来自坦普尔大学脑电图语料库(TUEG)的无标记五分钟脑电图样本上训练了 CNN 编码器,该语料库包含的患者数量是 PhysioNet 竞赛训练数据集的 20 倍以上。然后,我们将预先训练好的编码器作为基础层纳入 TST,并在 2023 年 PhysioNet 挑战赛数据集的脑电图上将复合模型作为分类器进行训练。我们的团队未能提交正式参赛作品,因此没有在测试集上得分。不过,在对比赛训练数据集进行并排比较时,我们的模型在使用预训练(比赛得分 0.351)而非随机初始化(比赛得分 0.211)的 CNN 编码器层时表现更好。这些结果表明,利用未标记数据提高预测性脑电图模型的特定任务性能具有潜在优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Leveraging Unlabeled Electroencephalographic Data to Predict Neurological Recovery for Comatose Patients Following Cardiac Arrest.

In response to the 2023 George B. Moody PhysioNet Challenge, we propose an automated, unsupervised pre-training approach to boost the performance of models that predict neurologic outcomes after cardiac arrest. Our team, (BrownBAI), developed a model architecture consisting of three parts: a pre-processor to convert raw electroencephalograms (EEGs) into two-dimensional spectrograms, a three-layer convolutional neural network (CNN) encoder for unsupervised pre-training, and a time series transformer (TST) model. We trained the CNN encoder on unlabeled five-minute EEG samples from the Temple University EEG Corpus (TUEG), which included more than 20x the patients available in the PhysioNet competition training dataset. We then incorporated the pre-trained encoder into the TST as a base layer and trained the composite model as a classifier on EEGs from the 2023 PhysioNet Challenge dataset. Our team was not able to submit an official competition entry and was therefore not scored on the test set. However, in a side-by-side comparison on the competition training dataset, our model performed better with a pretrained (competition score 0.351), rather than randomly initialized (competition score 0.211) CNN encoder layer. These results show the potential benefits of leveraging unlabeled data to boost task-specific performance of predictive EEG models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信